Skip to main content
Log in

An experimental investigation and optimization on the impact strength of kenaf fiber biocomposite: application of response surface methodology

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A big scientific challenge of biocomposites is in improving impact strength. Thus, the key aspect of the present study is in investigating an in-depth statistical approach on influence of processing parameters on the impact strength of the biocomposite. Natural fiber biocomposites, consisting of polypropylene (PP) and kenaf as natural fiber, were produced using melt blending. The simultaneous effects of different parameters including kenaf fiber loading, fiber length and polypropylene-grafted maleic anhydride (PP-g-MA) compatibilizer content on the impact strength have been evaluated. Response surface methodology (RSM) based on Box–Behnken design (BBD) was used to design the experiments. The optimum impact strength of 30.76 j/m was obtained with kenaf fiber loading of 26.77 wt%, fiber length of 6.09 mm and PP-g-MA content of 5 wt%. The biocomposites prepared with optimum levels of fabrication process parameters that were obtained using the response surface graph and models, had a 19% increase in impact strength than pure PP. Among the selected processing parameters, fiber loading has a most significant effect on the impact strength of the biocomposites. The thermal behavior of the kenaf fiber was evaluated from TGA/DTG thermograms. The fiber-matrix morphology in the treated biocomposites with PP-g-MA was confirmed by SEM analysis of the fractured specimens. FTIR spectra of the biocomposite with and without PP-g-MA were also studied to ascertain the existence of type of interfacial bonds. Finally, the crystallinity of PP and the biocomposites were also studied through DSC measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Joshi SV, Drzal L, Mohanty A, Arora S (2004) Are natural fiber composites environmentally superior to glass fiber reinforced composites? Compos Part A Appl Sci Manuf 35:371–376. doi:10.1016/j.compositesa.2003.09.016

    Article  CAS  Google Scholar 

  2. Campilho RDSG (2016) Natural fiber composites. CRC Press, Taylor & Francis Group

    Google Scholar 

  3. Zhang L, Zhong J, Ren X (2017) Natural fiber-based biocomposites. Green biocomposites. Springer, New York, pp 31–70

    Chapter  Google Scholar 

  4. Bajpai PK, Singh I, Madaan J (2012) Comparative studies of mechanical and morphological properties of polylactic acid and polypropylene based natural fiber composites. J Reinf Plast Compos 31:1712–1724. doi:10.1177/0731684412447992

    Article  CAS  Google Scholar 

  5. Lee HS, Cho D, Han SO (2008) Effect of natural fiber surface treatments on the interfacial and mechanical properties of henequen/polypropylene biocomposites. Macromol Res 16:411–417. doi:10.1007/BF03218538

    Article  CAS  Google Scholar 

  6. Tan T, Santos SF, Savastano H, Soboyejo WO (2011) Fracture and resistance-curve behavior in hybrid natural fiber and polypropylene fiber reinforced composites. J Mater Sci 47:2864–2874. doi:10.1007/s10853-011-6116-1

    Article  CAS  Google Scholar 

  7. Feng Y, Hu Y, Zhao G, Yin J, Jiang W (2011) Preparation and mechanical properties of high-performance short ramie fiber-reinforced polypropylene composites. J Appl Polym Sci 122:1564–1571. doi:10.1002/app.34281

    Article  CAS  Google Scholar 

  8. Senthil Kumar K, Siva I, Jeyaraj P, Winowlin Jappes JT, Amico SC, Rajini N (2014) Synergy of fiber length and content on free vibration and damping behavior of natural fiber reinforced polyester composite beams. Mater Des 1980–2015(56):379–386. doi:10.1016/j.matdes.2013.11.039

    Article  CAS  Google Scholar 

  9. Islam MS, Church JS, Miao M (2011) Effect of removing polypropylene fibre surface finishes on mechanical performance of kenaf/polypropylene composites. Compos Part A Appl Sci Manuf 42:1687–1693. doi:10.1016/j.compositesa.2011.07.023

    Article  CAS  Google Scholar 

  10. Pang A, Ismail H (2013) Effects of kenaf loading and 3-aminopropyltriethoxysilane coupling agent on the properties of polypropylene/waste tire dust/kenaf composites. J Thermoplast Compos Mater 27:1607–1619. doi:10.1177/0892705712475002

    Article  CAS  Google Scholar 

  11. Sallih N, Lescher P, Bhattacharyya D (2014) Factorial study of material and process parameters on the mechanical properties of extruded kenaf fibre/polypropylene composite sheets. Compos Part A Appl Sci Manuf 61:91–107. doi:10.1016/j.compositesa.2014.02.014

    Article  CAS  Google Scholar 

  12. Akhtar MN, Sulong AB, Radzi MKF, Ismail NF, Raza MR, Muhamad N, Khan MA (2016) Influence of alkaline treatment and fiber loading on the physical and mechanical properties of kenaf/polypropylene composites for variety of applications. Prog Nat Sci 26:657–664. doi:10.1016/j.pnsc.2016.12.004

    Article  CAS  Google Scholar 

  13. Pang AL, Ismail H (2014) Influence of kenaf form and loading on the properties of kenaf-filled polypropylene/waste tire dust composites: a comparison study. J Appl Polym Sci 131:233–265. doi:10.1002/app.40877

    Article  CAS  Google Scholar 

  14. Hao A, Zhao H, Chen JY (2013) Kenaf/polypropylene nonwoven composites: the influence of manufacturing conditions on mechanical, thermal, and acoustical performance. Compos Part B Eng 54:44–51. doi:10.1016/j.compositesb.2013.04.065

    Article  CAS  Google Scholar 

  15. Deng S, Beehag A, Hillier W, Zhang D, Ye L (2013) Kenaf-polypropylene composites manufactured from blended fiber mats. J Reinf Plast Compos 32:1198–1210. doi:10.1177/0731684413485652

    Article  CAS  Google Scholar 

  16. Hao A, Yuan L, Chen JY (2015) Notch effects and crack propagation analysis on kenaf/polypropylene nonwoven composites. Compos Part A Appl Sci Manuf 73:11–19. doi:10.1016/j.compositesa.2015.02.016

    Article  CAS  Google Scholar 

  17. Bledzki AK, Franciszczak P, Osman Z, Elbadawi M (2015) Polypropylene biocomposites reinforced with softwood, abaca, jute, and kenaf fibers. Ind Crops Prod 70:91–99. doi:10.1016/j.indcrop.2015.03.013

    Article  CAS  Google Scholar 

  18. Hamma A, Kaci M, Mohd Ishak ZA, Pegoretti A (2014) Starch-grafted-polypropylene/kenaf fibres composites. Part 1: mechanical performances and viscoelastic behaviour. Compos Part A Appl Sci Manuf 56:328–335. doi:10.1016/j.compositesa.2012.11.010

    Article  CAS  Google Scholar 

  19. Asumani OML, Reid RG, Paskaramoorthy R (2012) The effects of alkali–silane treatment on the tensile and flexural properties of short fibre non-woven kenaf reinforced polypropylene composites. Compos Part A Appl Sci Manuf 43:1431–1440. doi:10.1016/j.compositesa.2012.04.007

    Article  CAS  Google Scholar 

  20. Hao A, Zhao H, Jiang W, Yuan L, Chen JY (2012) Mechanical properties of Kenaf/polypropylene nonwoven composites. J Polym Environ 20:959–966. doi:10.1007/s10924-012-0484-8

    Article  CAS  Google Scholar 

  21. Hao A, Chen Y, Chen JY (2014) Creep and recovery behavior of kenaf/polypropylene nonwoven composites. J Appl Polym Sci 131:8864–8874. doi:10.1002/app.40726

    Article  CAS  Google Scholar 

  22. Liu W, Drzal LT, Mohanty AK, Misra M (2007) Influence of processing methods and fiber length on physical properties of kenaf fiber reinforced soy based biocomposites. Compos Part B Eng 38:352–359. doi:10.1016/j.compositesb.2006.05.003

    Article  CAS  Google Scholar 

  23. Joseph S, Sreekala M, Oommen Z, Koshy P, Thomas S (2002) A comparison of the mechanical properties of phenol formaldehyde composites reinforced with banana fibres and glass fibres. Compos Sci Technol 62:1857–1868. doi:10.1016/S0266-3538(02)00098-2

    Article  CAS  Google Scholar 

  24. Thirmizir MZA, Ishak ZAM, Taib RM, Rahim S, Jani SM (2011) Kenaf-bast-fiber-filled biodegradable poly(butylene succinate) composites: effects of fiber loading, fiber length, and maleated poly(butylene succinate) on the flexural and impact properties. J Appl Polym Sci 122:3055–3063. doi:10.1002/app.34046

    Article  CAS  Google Scholar 

  25. Mathew L, Joseph R (2007) Mechanical properties of short-isora-fiber-reinforced natural rubber composites: effects of fiber length, orientation, and loading; alkali treatment; and bonding agent. J Appl Polym Sci 103:1640–1650. doi:10.1002/app.25065

    Article  CAS  Google Scholar 

  26. Kwon H-J, Sunthornvarabhas J, Park J-W, Lee J-H, Kim H-J, Piyachomkwan K, Sriroth K, Cho D (2014) Tensile properties of kenaf fiber and corn husk flour reinforced poly(lactic acid) hybrid bio-composites: role of aspect ratio of natural fibers. Compos Part B Eng 56:232–237. doi:10.1016/j.compositesb.2013.08.003

    Article  CAS  Google Scholar 

  27. George J, Sreekala M, Thomas S (2001) A review on interface modification and characterization of natural fiber reinforced plastic composites. Polym Eng Sci 41:1471–1485. doi:10.1002/pen.10846

    Article  CAS  Google Scholar 

  28. Feng D, Caulfield D, Sanadi A (2001) Effect of compatibilizer on the structure-property relationships of kenaf-fiber/polypropylene composites. Polym Compos 22:506–517. doi:10.1002/pc.10555

    Article  CAS  Google Scholar 

  29. Keener T, Stuart R, Brown T (2004) Maleated coupling agents for natural fibre composites. Compos Part A Appl Sci Manuf 35:357–362. doi:10.1016/j.compositesa.2003.09.014

    Article  CAS  Google Scholar 

  30. Mohanty A, Drzal L, Misra M (2002) Engineered natural fiber reinforced polypropylene composites: influence of surface modifications and novel powder impregnation processing. J Adhes Sci Technol 16:999–1015. doi:10.1163/156856102760146129

    Article  CAS  Google Scholar 

  31. Ismail H, Hamid Abdullah A, Abu Bakar A (2010) Kenaf core reinforced high-density polyethylene/soya powder composites: the effects of filler loading and compatibilizer. J Reinf Plast Compos 29:2489–2497. doi:10.1177/0731684409354392

    Article  CAS  Google Scholar 

  32. Ansari MNM, Ismail H (2008) The effect of silane coupling agent on mechanical properties of feldspar filled polypropylene composites. J Reinf Plast Compos 28:3049–3060. doi:10.1177/0731684408095197

    Article  CAS  Google Scholar 

  33. Ghani SA, Feng YZ, Ismail H (2012) Properties of tyre dust-filled low density polyethylene composites: the effect of phthalic anhydride. Polym Plast Technol Eng 51:358–363. doi:10.1080/03602559.2011.639329

    Article  CAS  Google Scholar 

  34. Chapman R, Institute T (2010) Applications of nonwovens in technical textiles. Woodhead Publishing, Swaston

    Book  Google Scholar 

  35. Saba N, Paridah M, Jawaid M, Abdan K, Ibrahim N (2015) Potential utilization of kenaf biomass in different applications. Agricultural biomass based potential materials. Springer, New york, pp 1–34

    Google Scholar 

  36. Montgomery DC (2008) Design and analysis of experiments. John Wiley & Sons, Hoboken

    Google Scholar 

  37. Rostamiyan Y, Hamed Mashhadzadeh A, SalmanKhani A (2014) Optimization of mechanical properties of epoxy-based hybrid nanocomposite: effect of using nano silica and high-impact polystyrene by mixture design approach. Mater Des 1980–2015(56):1068–1077. doi:10.1016/j.matdes.2013.11.060

    Article  CAS  Google Scholar 

  38. Ashenai Ghasemi F, Daneshpayeh S, Ghasemi I, Ayaz M (2015) An investigation on the Young’s modulus and impact strength of nanocomposites based on polypropylene/linear low-density polyethylene/titan dioxide (PP/LLDPE/TiO2) using response surface methodology. Polym Bull 73:1741–1760. doi:10.1007/s00289-015-1574-2

    Article  CAS  Google Scholar 

  39. Rostamiyan Y, Fereidoon A, Mashhadzadeh AH, Ashtiyani MR, Salmankhani A (2015) Using response surface methodology for modeling and optimizing tensile and impact strength properties of fiber orientated quaternary hybrid nano composite. Compos Part B Eng 69:304–316. doi:10.1016/j.compositesb.2014.09.031

    Article  CAS  Google Scholar 

  40. Rostamiyan Y, Fereidoon A, Rezaeiashtiyani M, Hamed Mashhadzadeh A, Salmankhani A (2015) Experimental and optimizing flexural strength of epoxy-based nanocomposite: effect of using nano silica and nano clay by using response surface design methodology. Mater Des 69:96–104. doi:10.1016/j.matdes.2014.11.062

    Article  CAS  Google Scholar 

  41. Subasinghe ADL, Das R, Bhattacharyya D (2015) Parametric analysis of flammability performance of polypropylene/kenaf composites. J Mater Sci 51:2101–2111. doi:10.1007/s10853-015-9520-0

    Article  CAS  Google Scholar 

  42. Ashenai Ghasemi F, Ghasemi I, Menbari S, Ayaz M, Ashori A (2016) Optimization of mechanical properties of polypropylene/talc/graphene composites using response surface methodology. Polym Test 53:283–292. doi:10.1016/j.polymertesting.2016.06.012

    Article  CAS  Google Scholar 

  43. Mhalla MM, Bahloul A, Bouraoui C (2017) Analytical models for predicting tensile strength and acoustic emission count of a glass fiber reinforced polyamide using response surface method. J Alloys Compd 695:2356–2364. doi:10.1016/j.jallcom.2016.11.108

    Article  CAS  Google Scholar 

  44. Rostamiyan Y, Fereidoon A, Ghalebahman AG, Mashhadzadeh AH, Salmankhani A (2015) Experimental study and optimization of damping properties of epoxy-based nanocomposite: effect of using nanosilica and high-impact polystyrene by mixture design approach. Mater Des 1980–2015(65):1236–1244. doi:10.1016/j.matdes.2014.10.022

    Article  CAS  Google Scholar 

  45. Myers RH, Montgomery DC, Anderson-Cook CM (2016) Response surface methodology: process and product optimization using designed experiments. Wiley, Hoboken

    Google Scholar 

  46. Zabihzadeh SM, Ebrahimi G, Enayati AA (2011) Effect of compatibilizer on mechanical, morphological, and thermal properties of chemimechanical pulp-reinforced PP composites. J Thermoplast Compos Mater 24:221–231. doi:10.1177/0892705710387048

    Article  CAS  Google Scholar 

  47. Chattopadhyay SK, Khandal R, Uppaluri R, Ghoshal AK (2010) Mechanical, thermal, and morphological properties of maleic anhydride-g-polypropylene compatibilized and chemically modified banana-fiber-reinforced polypropylene composites. J Appl Polym Sci 117:1731–1740. doi:10.1002/app.32065

    Article  CAS  Google Scholar 

  48. Baiardo M, Zini E, Scandola M (2004) Flax fibre–polyester composites. Compos Part A Appl Sci Manuf 35:703–710. doi:10.1016/j.compositesa.2004.02.004

    Article  CAS  Google Scholar 

  49. Bos HL, Müssig J, van den Oever MJ (2006) Mechanical properties of short-flax-fibre reinforced compounds. Compos Part A Appl Sci Manuf 37:1591–1604. doi:10.1016/j.compositesa.2005.10.011

    Article  CAS  Google Scholar 

  50. Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788. doi:10.1016/j.fuel.2006.12.013

    Article  CAS  Google Scholar 

  51. Ouajai S, Shanks R (2005) Composition, structure and thermal degradation of hemp cellulose after chemical treatments. Polym Degrad Stab 89:327–335. doi:10.1016/j.polymdegradstab.2005.01.016

    Article  CAS  Google Scholar 

  52. Spinace MA, Lambert CS, Fermoselli KK, De Paoli M-A (2009) Characterization of lignocellulosic curaua fibres. Carbohydr Polym 77:47–53. doi:10.1016/j.carbpol.2008.12.005

    Article  CAS  Google Scholar 

  53. Alvarez VA, Vazquez A (2006) Influence of fiber chemical modification procedure on the mechanical properties and water absorption of MaterBi-Y/sisal fiber composites. Compos Part A Appl Sci Manuf 37:1672–1680. doi:10.1016/j.compositesa.2005.10.005

    Article  CAS  Google Scholar 

  54. Arifuzzaman Khan G, Shaheruzzaman M, Rahman M, Abdur Razzaque S, Islam MS, Alam MS (2009) Surface modification of okra bast fiber and its physico-chemical characteristics. Fiber Polym 10:65–70. doi:10.1007/s12221-009-0065-1

    Article  CAS  Google Scholar 

  55. Seki Y, Sarikanat M, Sever K, Durmuşkahya C (2013) Extraction and properties of Ferula communis (chakshir) fibers as novel reinforcement for composites materials. Compos Part B Eng 44:517–523. doi:10.1016/j.compositesb.2012.03.013

    Article  CAS  Google Scholar 

  56. Sgriccia N, Hawley M, Misra M (2008) Characterization of natural fiber surfaces and natural fiber composites. Compos Part A Appl Sci Manuf 39:1632–1637. doi:10.1016/j.compositesa.2008.07.007

    Article  CAS  Google Scholar 

  57. Jonoobi M, Harun J, Mishra M, Oksman K (2009) Chemical composition, crystallinity and thermal degradation of bleached and unbleached kenaf bast (Hibiscus cannabinus) pulp and nanofiber. BioResources 4:626–639

    CAS  Google Scholar 

  58. Liu W, Mohanty A, Drzal L, Misra M (2004) Effects of alkali treatment on the structure, morphology and thermal properties of native grass fibers as reinforcements for polymer matrix composites. J Mater Sci 39:1051–1054. doi:10.1023/B:JMSC.0000012942.83614.75

    Article  CAS  Google Scholar 

  59. Mwaikambo LY, Ansell MP (2002) Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. J Appl Polym Sci 84:2222–2234. doi:10.1002/app.10460

    Article  CAS  Google Scholar 

  60. Liu D, Han G, Huang J, Zhang Y (2009) Composition and structure study of natural Nelumbo nucifera fiber. Carbohydr Polym 75:39–43. doi:10.1016/j.carbpol.2008.06.003

    Article  CAS  Google Scholar 

  61. Mohanty S, Verma SK, Nayak SK, Tripathy SS (2004) Influence of fiber treatment on the performance of sisal–polypropylene composites. J Appl Polym Sci 94:1336–1345. doi:10.1002/app.21161

    Article  CAS  Google Scholar 

  62. Ndiaye D, Matuana LM, Morlat-Therias S, Vidal L, Tidjani A, Gardette JL (2011) Thermal and mechanical properties of polypropylene/wood-flour composites. J Appl Polym Sci 119:3321–3328. doi:10.1002/app.32985

    Article  CAS  Google Scholar 

  63. Ibrahim AN, Wahit MU, Yussuf AA (2014) Effect of fiber reinforcement on mechanical and thermal properties of poly (ɛ-caprolactone)/poly (lactic acid) blend composites. Fiber Polym 15:574–582. doi:10.1007/s12221-014-0574-4

    Article  CAS  Google Scholar 

  64. Baghaei B, Skrifvars M, Berglin L (2013) Manufacture and characterisation of thermoplastic composites made from PLA/hemp co-wrapped hybrid yarn prepregs. Compos Part A Appl Sci Manuf 50:93–101. doi:10.1016/j.compositesa.2013.03.012

    Article  CAS  Google Scholar 

  65. Song Y, Liu J, Chen S, Zheng Y, Ruan S, Bin Y (2013) Mechanical properties of poly (lactic acid)/hemp fiber composites prepared with a novel method. J Polym Environ 21:1117–1127. doi:10.1007/s10924-013-0569-z

    Article  CAS  Google Scholar 

  66. Ahmad E, Luyt A (2012) Morphology, thermal, and dynamic mechanical properties of poly (lactic acid)/sisal whisker nanocomposites. Polym Compos 33:1025–1032. doi:10.1002/pc.22236

    Article  CAS  Google Scholar 

  67. Roumeli E, Terzopoulou Z, Pavlidou E, Chrissafis K, Papadopoulou E, Athanasiadou E, Triantafyllidis K, Bikiaris DN (2015) Effect of maleic anhydride on the mechanical and thermal properties of hemp/high-density polyethylene green composites. J Therm Anal Calorim 121:93–105. doi:10.1007/s10973-015-4596-y

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hessameddin Yaghoobi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yaghoobi, H., Fereidoon, A. An experimental investigation and optimization on the impact strength of kenaf fiber biocomposite: application of response surface methodology. Polym. Bull. 75, 3283–3309 (2018). https://doi.org/10.1007/s00289-017-2212-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-2212-y

Keywords

Navigation