Skip to main content
Log in

Mechanical properties of polylactic acid/synthetic rubber blend reinforced with cellulose nanoparticles isolated from kenaf fibres

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this work, cellulose nanoparticles (CNP) reinforcement on synthetic rubber (SR)/polylactic acid (PLA) blend was investigated. Initially, SR/PLA blend was prepared by varying SR from 5 to 20 wt%. Later, a fixed amount (3 wt%) of CNP was added and resulting effect on mechanical, thermal, and dynamic properties was studied. The results show the addition of CNP in SR/PLA blend resulted in ~147 and ~196% improvement in tensile strength and storage modulus, respectively. In addition, impact strength of SR/PLA blend was almost doubled after CNP incorporation. An improvement of ~4.5% in the thermal stability of SR/PLA was also observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. AL-Oqla FM, Alothman OY, Jawaid M, Sapuan S, Es-Saheb M (2014) Processing and properties of date palm fibers and its composites. In: Hakeem KR, Jawaid M, Rashid U (eds) Biomass Bioenergy, vol 1. Springer, Cham, Switzerland, pp 1–25. doi:10.1007/978-3-319-07641-6_1

  2. Râpă M, Miteluţ AC, Tănase EE, Grosu E, Popescu P, Popa ME et al (2016) Influence of chitosan on mechanical, thermal, barrier and antimicrobial properties of PLA-biocomposites for food packaging. Compos B Eng 102:112–121

    Article  Google Scholar 

  3. Veccharelli KM, Tong VK, Young JL, Yang J, Gianneschi NC (2016) Dual responsive polymeric nanoparticles prepared by direct functionalization of polylactic acid-based polymers via graft-from ring opening metathesis polymerization. Chem Commun 52(3):567–570

    Article  CAS  Google Scholar 

  4. Xu H, Yang Y (2012) Bioplastics from waste materials and low-value byproducts. Degradable polymers and materials: principles and practice, 2nd edn. ACS Publications, United States, pp 113–140. doi:10.1021/bk-2012-1114.ch008

  5. Frone AN, Berlioz S, Chailan J-F, Panaitescu DM (2013) Morphology and thermal properties of PLA–cellulose nanofibers composites. Carbohyd Polym 91(1):377–384

    Article  CAS  Google Scholar 

  6. Lim L-T, Auras R, Rubino M (2008) Processing technologies for poly (lactic acid). Prog Polym Sci 33(8):820–852

    Article  CAS  Google Scholar 

  7. Marra A, Silvestre C, Duraccio D, Cimmino S (2016) Polylactic acid/zinc oxide biocomposite films for food packaging application. Int J Biol Macromol 88:254–262

    Article  CAS  Google Scholar 

  8. Bitinis N, Verdejo R, Cassagnau P, Lopez-Manchado M (2011) Structure and properties of polylactide/natural rubber blends. Mater Chem Phys 129(3):823–831

    Article  CAS  Google Scholar 

  9. Hashima K, Nishitsuji S, Inoue T (2010) Structure-properties of super-tough PLA alloy with excellent heat resistance. Polymer 51(17):3934–3939

    Article  CAS  Google Scholar 

  10. Ock HG, Kim DH, Ahn KH, Lee SJ, Maia JM (2016) Effect of organoclay as a compatibilizer in poly (lactic acid) and natural rubber blends. Eur Polymer J 76:216–227

    Article  CAS  Google Scholar 

  11. Wu N, Zhang H, Fu G (2016) Super-tough poly (lactide) thermoplastic vulcanizates based on modified natural rubber. ACS Sustain Chem Eng 5(1):78–84

    Article  Google Scholar 

  12. Wang Y, Chen K, Xu C, Chen Y (2015) Supertoughened biobased poly (lactic acid)–epoxidized natural rubber thermoplastic vulcanizates: fabrication, co-continuous phase structure, interfacial in situ compatibilization, and toughening mechanism. J Phys Chem B 119(36):12138–12146

    Article  CAS  Google Scholar 

  13. Bitinis N, Verdejo R, Maya EM, Espuche E, Cassagnau P, Lopez-Manchado MA (2012) Physicochemical properties of organoclay filled polylactic acid/natural rubber blend bionanocomposites. Compos Sci Technol 72(2):305–313

    Article  CAS  Google Scholar 

  14. Jaratrotkamjorn R, Khaokong C, Tanrattanakul V (2012) Toughness enhancement of poly (lactic acid) by melt blending with natural rubber. J Appl Polym Sci 124(6):5027–5036

    CAS  Google Scholar 

  15. Jawaid M, Khalil HA, Hassan A, Dungani R, Hadiyane A (2013) Effect of jute fibre loading on tensile and dynamic mechanical properties of oil palm epoxy composites. Compos B Eng 45(1):619–624

    Article  CAS  Google Scholar 

  16. Spinella S, Re GL, Liu B, Dorgan J, Habibi Y, Leclere P et al (2015) Polylactide/cellulose nanocrystal nanocomposites: efficient routes for nanofiber modification and effects of nanofiber chemistry on PLA reinforcement. Polymer 65:9–17

    Article  CAS  Google Scholar 

  17. Braun B, Dorgan JR (2008) Single-step method for the isolation and surface functionalization of cellulosic nanowhiskers. Biomacromol 10(2):334–341

    Article  Google Scholar 

  18. Oksman K, Mathew AP, Bondeson D, Kvien I (2006) Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Compos Sci Technol 66(15):2776–2784

    Article  CAS  Google Scholar 

  19. Jang JY, Jeong TK, Oh HJ, Youn JR, Song YS (2012) Thermal stability and flammability of coconut fiber reinforced poly (lactic acid) composites. Compos B Eng 43(5):2434–2438

    Article  CAS  Google Scholar 

  20. Petersson L, Kvien I, Oksman K (2007) Structure and thermal properties of poly(lactic acid)/cellulose whiskers nanocomposite materials. Compos Sci Technol 67(11–12):2535–2544

    Article  CAS  Google Scholar 

  21. Porras A, Maranon A (2012) Development and characterization of a laminate composite material from polylactic acid (PLA) and woven bamboo fabric. Compos B Eng 43(7):2782–2788

    Article  CAS  Google Scholar 

  22. Waser H (1974) Elastomer blends and tire sidewalls prepared therefrom. Google Patents

  23. Dinsmore RP (1929) Synthetic rubber and method of making it. Google Patents

  24. Suttivutnarubet C, Jaturapiree A, Chaichana E, Praserthdam P, Jongsomjit B (2016) Synthesis of polyethylene/coir dust hybrid filler via in situ polymerization with zirconocene/MAO catalyst for use in natural rubber biocomposites. Iran Polym J 25(10):841–848

    Article  CAS  Google Scholar 

  25. Shimizu A, Kusano M, Takami T (1977) Rubber compositions and methods for production thereof stabilized. Google Patents

  26. Mohammad Reza K, Mohammad K, Chantara TR, Rashmi W, Md Enamul H (2016) Sonosynthesis of cellulose nanoparticles (CNP) from Kenaf fibre: effects of process parameters. Fibers Polym 17(9):1352–1358

    Article  Google Scholar 

  27. Ketabchi MR, Khalid M, Ratnam CT, Manickam S, Walvekar R, Hoque ME (2016) Sonosynthesis of cellulose nanoparticles (CNP) from kenaf fiber: effects of processing parameters. Fibers Polym 17(9):1352–1358

    Article  CAS  Google Scholar 

  28. Ketabchi MR, Khalid M, Ratnam CT, Walvekar R (2016) Mechanical and thermal properties of polylactic acid composites reinforced with cellulose nanoparticles extracted from kenaf fibre. Mater Res Express 3(12):125301

    Article  Google Scholar 

  29. Wan Y, Luo H, He F, Liang H, Huang Y, Li X (2009) Mechanical, moisture absorption, and biodegradation behaviours of bacterial cellulose fibre-reinforced starch biocomposites. Compos Sci Technol 69(7):1212–1217

    Article  CAS  Google Scholar 

  30. Granda L, Espinach F, Tarrés Q, Méndez J, Delgado-Aguilar M, Mutjé P (2016) Towards a good interphase between bleached kraft softwood fibers and poly (lactic) acid. Compos Part B Eng 99:514–520. doi:10.1016/j.compositesb.2016.05.008

    Article  CAS  Google Scholar 

  31. Suksut B, Deeprasertkul C (2011) Effect of nucleating agents on physical properties of poly(lactic acid) and its blend with natural rubber. J Polym Environ 19(1):288–296

    Article  CAS  Google Scholar 

  32. Li X, Tabil LG, Panigrahi S (2007) Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ 15(1):25–33

    Article  Google Scholar 

  33. Lee S-Y, Mohan DJ, Kang I-A, Doh G-H, Lee S, Han SO (2009) Nanocellulose reinforced PVA composite films: effects of acid treatment and filler loading. Fibers Polym 10(1):77–82

    Article  CAS  Google Scholar 

  34. Khalid M, Ratnam CT, Abdullah LC, Walvekar R, Ching YC, Ketabchi MR (2016) Mechanical and physical performance of cowdung‐based polypropylene biocomposites. Polym Compos. doi:10.1002/pc.23928

  35. Zaaba NF, Ismail H, Jaafar M (2015) A study of the degradation of compatibilized and uncompatibilized peanut shell powder/recycled polypropylene composites due to natural weathering. J Vinyl Addit Technol. doi:10.1002/vnl.21504

  36. Grigoriadi K, Giannakas A, Ladavos AK, Barkoula N-M (2015) Interplay between processing and performance in chitosan-based clay nanocomposite films. Polym Bull 72(5):1145–1161

    Article  CAS  Google Scholar 

  37. Nair KG, Dufresne A (2003) Crab shell chitin whisker reinforced natural rubber nanocomposites. 2. Mechanical behavior. Biomacromolecules-Washington 4(3):666–674

  38. Gong X, Liu J, Baskaran S, Voise RD, Young JS (2000) Surfactant-assisted processing of carbon nanotube/polymer composites. Chem Mater 12(4):1049–1052

    Article  CAS  Google Scholar 

  39. Xu C, Yuan D, Fu L, Chen Y (2014) Physical blend of PLA/NR with co-continuous phase structure: preparation, rheology property, mechanical properties and morphology. Polym Test 37:94–101

    Article  Google Scholar 

  40. Gregorova A, Sedlarik V, Pastorek M, Jachandra H, Stelzer F (2011) Effect of compatibilizing agent on the properties of highly crystalline composites based on poly(lactic acid) and wood flour and/or mica. J Polym Environ 19(2):372–381

    Article  CAS  Google Scholar 

  41. Pei A, Zhou Q, Berglund LA (2010) Functionalized cellulose nanocrystals as biobased nucleation agents in poly (l-lactide)(PLLA)—crystallization and mechanical property effects. Compos Sci Technol 70(5):815–821

    Article  CAS  Google Scholar 

  42. Bokobza L (2004) The reinforcement of elastomeric networks by fillers. Macromol Mater Eng 289(7):607–621

    Article  CAS  Google Scholar 

  43. Kang H, Qiao B, Wang R, Wang Z, Zhang L, Ma J et al (2013) Employing a novel bioelastomer to toughen polylactide. Polymer 54(9):2450–2458

    Article  CAS  Google Scholar 

  44. Quaresimin M, Schulte K, Zappalorto M, Chandrasekaran S (2016) Toughening mechanisms in polymer nanocomposites: from experiments to modelling. Compos Sci Technol 123:187–204

    Article  CAS  Google Scholar 

  45. Sun Q, Mekonnen T, Misra M, Mohanty AK (2016) Novel biodegradable cast film from carbon dioxide based copolymer and poly(lactic acid). J Polym Environ 24(1):23–36

    Article  CAS  Google Scholar 

  46. Ropers S, Kardos M, Osswald TA (2016) A thermo-viscoelastic approach for the characterization and modeling of the bending behavior of thermoplastic composites. Compos Part A Appl Sci Manuf 90:22–32. doi:10.1016/j.compositesa.2016.06.016

    Article  CAS  Google Scholar 

  47. Aranguren MI, Marcovich NE, Salgueiro W, Somoza A (2013) Effect of the nano-cellulose content on the properties of reinforced polyurethanes. A study using mechanical tests and positron anihilation spectroscopy. Polym Test 32(1):115–122

    Article  CAS  Google Scholar 

  48. Lee C-K, Cho MS, Kim IH, Lee Y, Do Nam J (2010) Preparation and physical properties of the biocomposite, cellulose diacetate/kenaf fiber sized with poly (vinyl alcohol). Macromol Res 18(6):566–570

    Article  CAS  Google Scholar 

  49. Jawaid M, Abdul Khalil HPS, Alattas OS (2012) Woven hybrid biocomposites: dynamic mechanical and thermal properties. Compos A Appl Sci Manuf 43(2):288–293

    Article  CAS  Google Scholar 

  50. Zhang C, Wang W, Huang Y, Pan Y, Jiang L, Dan Y et al (2013) Thermal, mechanical and rheological properties of polylactide toughened by expoxidized natural rubber. Mater Des 45:198–205

    Article  CAS  Google Scholar 

  51. Cao X, Mohamed A, Gordon S, Willett J, Sessa D (2003) DSC study of biodegradable poly (lactic acid) and poly (hydroxy ester ether) blends. Thermochim Acta 406(1):115–127

    Article  CAS  Google Scholar 

  52. Sarasua J-R, Prud’Homme RE, Wisniewski M, Le Borgne A, Spassky N (1998) Crystallization and melting behavior of polylactides. Macromolecules 31(12):3895–3905

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Khalid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ketabchi, M.R., Ratnam, C.T., Khalid, M. et al. Mechanical properties of polylactic acid/synthetic rubber blend reinforced with cellulose nanoparticles isolated from kenaf fibres. Polym. Bull. 75, 809–827 (2018). https://doi.org/10.1007/s00289-017-2061-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-2061-8

Keywords

Navigation