Skip to main content
Log in

Selective Laser Sintering Manufacturing and Characterization of Lightweight PA 12 Polymer Composites with Different Hollow Microsphere Additives

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The use of additives in polyamide polymeric SLS built frameworks further reinforces the goal of developing lightweight components, which serves as the basis for the current investigation. In this paper, different amounts of hollow glass microspheres (HGMs) were added to polyamide 12 (PA 12), and their sintered components were compared for their physical and mechanical properties, including tensile and 3-point bending tests. In terms of density reduction, the PA 12-20HGM composite structure achieved the highest reduction figure of 20.8 %. According to specific strength and modulus calculations, PA 12-20HGS60 and PA 12-20HGM composite structures provided the highest mechanical test results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this article.

References

  1. T.D. Ngo, A. Kashani, G. Imbalzano, K.T.Q. Nguyen and D. Hui, Additive Manufacturing (3D printing): A review of Materials Methods, Applications and Challenges, Compos. Part B Eng., 2018, 143, p 172–196. https://doi.org/10.1016/j.compositesb.2018.02.012

    Article  CAS  Google Scholar 

  2. C. Yan, L. Hao, L. Xu and Y. Shi, Preparation, Characterisation and Processing of Carbon Fibre/Polyamide-12 Composites for Selective Laser Sintering, Compos Sci Technol, 2011, 71(16), p 1834–1841. https://doi.org/10.1016/j.compscitech.2011.08.013

    Article  CAS  Google Scholar 

  3. M. Schmid, Laser Sintering with Plastics: Laser Sintering with Plastics Technology, Processes, and Materials, 2018 (Munich), Hanser Publications

  4. M. Schmid and K. Wegener, Additive Manufacturing: Polymers Applicable for Laser Sintering (LS), Proc. Eng., 2016, 149, p 457–464. https://doi.org/10.1016/j.proeng.2016.06.692

    Article  CAS  Google Scholar 

  5. S. Greiner, K. Wudy, L. Lanzl and D. Drummer, Selective Laser Sintering of Polymer Blends: Bulk Properties and Process Behavior, Polym. Test, 2017, 64, p 136–144. https://doi.org/10.1016/j.polymertesting.2017.09.039

    Article  CAS  Google Scholar 

  6. Wohlers Report, 3D Printing and Additive Manufacturing State of the Industry. Wohlers Associates, https://wohlersassociates.com/2020report.htm, 2020. Accessed 03 December 2020

  7. V. Carlota, Polymer 3D printing market to generate $11.7 billion in 2020. 3D Natives, https://www.3dnatives.com/en/polymer-3d-printing-market-2020-040320204/#!, 2020. Accessed 11 November 2020

  8. I. Gibson, D. Rosen, B. Stucker, Powder Bed Fusion Processes. In: Additive Manufacturing Technologies, 2nd edn. 2015 (New York), Springer Science+Business Media, p 107–145.

  9. R. Goodridge and S. Ziegelmeier, Powder Bed Fusion of Polymers, Laser Additive Manufacturing: Materials, Design, Technologies, and Applications. Woodhead Publishing, 2017, p 181–204

    Chapter  Google Scholar 

  10. S. Yuan, F. Shen, C.K. Chua and K. Zhou, Polymeric Composites For Powder-Based Additive Manufacturing: Materials And Applications, Prog. Polym. Sci., 2019, 91, p 141–168. https://doi.org/10.1016/j.progpolymsci.2018.11.001

    Article  CAS  Google Scholar 

  11. G.D. Goh, Y.L. Yap, S. Agarwala and W.Y. Yeong, Recent Progress in Additive Manufacturing of Fiber Reinforced Polymer Composite, Adv. Mater. Technol., 2019, 4(1), p 1–22. https://doi.org/10.1002/admt.201800271

    Article  CAS  Google Scholar 

  12. G.V. Salmoria, J.L. Leite, L.F. Vieira, A.T.N. Pires and C.R.M. Roesler, Mechanical Properties of PA6/PA12 Blend Specimens Prepared by Selective Laser Sintering, Polym. Test, 2012, 31(3), p 411–416. https://doi.org/10.1016/j.polymertesting.2011.12.006

    Article  CAS  Google Scholar 

  13. D. Zindani and K. Kumar, An İnsight İnto Additive Manufacturing of Fiber Reinforced Polymer Composite, Int. J. Light Mater. Manuf., 2019, 2(4), p 267–278. https://doi.org/10.1016/j.ijlmm.2019.08.004

    Article  Google Scholar 

  14. A.A. Mousa, The Effects Of Content And Surface Modification of Filler on The Mechanical Properties of Selective Laser Sintered Polyamide 12 Composites, Jordan J. Mech. Ind. Eng., 2014, 8(5), p 265–274.

    Google Scholar 

  15. W. Jing, C. Hui, W. Qiong, L. Hongbo and L. Zhanjun, Surface Modification of Carbon Fibers and The Selective Laser Sintering of Modified Carbon Fiber/Nylon 12 Composite Powder, Mater. Des., 2017, 116, p 253–260. https://doi.org/10.1016/j.matdes.2016.12.037

    Article  CAS  Google Scholar 

  16. S. Balzereit, F. Proes, V. Altstädt and C. Emmelmann, Properties of Copper Modified Polyamide 12-Powders and Their Potential for The Use As Laser Direct Structurable Electronic Circuit Carriers, Addit. Manuf., 2018, 23, p 347–354. https://doi.org/10.1016/j.addma.2018.08.016

    Article  CAS  Google Scholar 

  17. R.A. Paggi, V.E. Beal and G.V. Salmoria, Process Optimization for PA12/MWCNT Nanocomposite Manufacturing By Selective Laser Sintering, Int. J. Adv. Manuf. Technol., 2012, 66, p 1977–1985. https://doi.org/10.1007/s00170-012-4474-8

    Article  Google Scholar 

  18. K. Wudy, L. Lanzl and D. Drummer, Selective Laser Sintering of Filled Polymer Systems: Bulk Properties and Laser Beam Material Interaction, Phys. Proc., 2016, 83, p 991–1002. https://doi.org/10.1016/j.phpro.2016.08.104

    Article  CAS  Google Scholar 

  19. A.J. Cano, A. Salazar and J. Rodríguez, Effect of Temperature on The Fracture Behavior of Polyamide 12 and Glass-Filled Polyamide 12 Processed by Selective Laser Sintering, Eng. Fract. Mech., 2018, 203, p 66–80. https://doi.org/10.1016/j.engfracmech.2018.07.035

    Article  Google Scholar 

  20. H. Chung and S. Das, Processing and Properties of Glass Bead Particulate-Filled Functionally Graded Nylon-11 Composites Produced by Selective Laser Sintering, Mater. Sci. Eng. A, 2006, 437(2), p 226–234. https://doi.org/10.1016/j.msea.2006.07.112

    Article  CAS  Google Scholar 

  21. J. Schmidt, J.G. Bonilla, M. Sachs, L. Lanzl, K. Wudy, K.E. Wirth, D. Drummer, W. Peukert, Production of polybutylene terephthalate glass composite powders and characterization for processing in selective laser sintering, 2016, 27th Annu Int Solid Free Fabr Symp-An Addit Manuf Conf SFF, August 8–10, 2016 (Austin, Texas), 2016, p 989-997

  22. Solid Glass Particles. https://www.cospheric.com/solid_glass_microspheres_beads_powders.htm. Accessed 10 December 2020

  23. PA 640-GSL. https://alm-llc.com/portfolio-items/pa-640-gsl/?portfolioCats=21. Accessed 12 December 2020

  24. PA 840-GSL. https://alm-llc.com/portfolio-items/material-pa-840-gsl/?portfolioCats=14. Accessed 12 December 2020

  25. B. Özbay and I.E. Serhatlı, Processing and Characterization of Hollow Glass-Filled Polyamide 12 Composites by Selective Laser Sintering Method, Mater. Technol., 2020, 00(00), p 1–11. https://doi.org/10.1080/10667857.2020.1824149

    Article  CAS  Google Scholar 

  26. 3MTM Glass Bubbles iM16K. https://multimedia.3m.com/mws/media/788487O/3m-glass-bubbles-im16k.pdf. Accessed 10 December 2020

  27. Plastics-Determination of Tensile Properties Part 2: Test Conditions for Molding and Extrusion Plastics, ISO 527–2:2012, International Organization for Standardization (ISO) Standards, 2012

  28. Plastics-Determination of Flexural Properties, ISO Standard 178:2019 (2019), International Organization for Standardization (ISO) Standards, 2019

  29. Plastics-Determination of Charpy İmpact Properties-Part 1: Non-İnstrumented Impact Test, ISO Standard ISO 179–1:2010 (2010), International Organization for Standardization (ISO) Standards, 2010

  30. Plastics Differential Scanning Calorimetry (DSC)-Part 1: General Principles, ISO Standard11357–1:2 (2016), International Organization for Standardization (ISO) Standards, 2016

  31. L. Lanzl, K. Wudy, S. Greiner and D. Drummer, Selective Laser Sintering of Copper Filled Polyamide 12: Characterization of Powder Properties and Process Behavior, Polym. Compos., 2019, 40(5), p 1801–1809. https://doi.org/10.1002/pc.24940

    Article  CAS  Google Scholar 

  32. L. Lanzl, K. Wudy and D. Drummer, The Effect of Short Glass Fibers on The Process Behavior of Polyamide 12 During Selective Laser Beam Melting, Polym. Test, 2020, 83, 106313. https://doi.org/10.1016/j.polymertesting.2019.106313

    Article  CAS  Google Scholar 

  33. C.E. Majewski, H. Zarringhalam, N. Hopkinson, Effects of Degree of Particle Melt And Crystallinity in SLS Nylon-12 Parts, 19th Annu Int Solid Free Fabr Symp SFF 2008. 2008, p 45–54

  34. G.M. Craft, Characterizatin of Nylon-12 in A novel additive manufacturing technology, and the rheological and spectroscopic analysis of PEG-starch matrix interactions. University of South Florida. 2018; PhD Thesis. Available from: https://scholarcommons.usf.edu/cgi/viewcontent.cgi?article=8334&context=etd.

  35. B. Ravishankar, S.K. Nayak and M.A. Kader, Hybrid Composites for Automotive Applications –A Review, J. Reinf. Plast. Compos., 2019, 38, p 835–845. https://doi.org/10.1177/0731684419849708

    Article  CAS  Google Scholar 

  36. J. Ding, Q. Liu, B. Zhang, F. Ye and Y. Gao, Preparation and Characterization of Hollow Glass Microsphere Ceramics and Silica Aerogel/Hollow Glass Microsphere Ceramics Having Low Density and Low Thermal Conductivity, J. Alloy. Compd., 2020, 831, 154737. https://doi.org/10.1016/j.jallcom.2020.154737

    Article  CAS  Google Scholar 

  37. G.B. Carvalho, S.V. Canevarolo and J.A. Sousa, Influence of İnterfacial İnteractions on the Mechanical Behavior of Hybrid Composites of Polypropylene/Short Glass Fibers/ Hollow Glass Beads, Polym. Test., 2020, 85, 106418. https://doi.org/10.1016/j.polymertesting.2020.106418

    Article  CAS  Google Scholar 

  38. A. Berman, E. DiLoreto, R.J. Moon and K. Kalaitzidou, Hollow Glass Spheres in Sheet Molding Compound Composites: Limitations and Potential, Polym. Compos., 2020, 42, p 1279–1291. https://doi.org/10.1002/pc.25900

    Article  CAS  Google Scholar 

  39. K.J. Krakowiak, R.G. Nannapaneni, A. Moshiri, T. Phatak, D. Stefaniuk, L. Sadowski, M. Java and A. Qomi, Engineering of High Specific Strength and Low Thermal Conductivity Cementitious Composites with Hollow Glass Microspheres for High-Temperature High-Pressure Applications, Cem. Concr. Compos., 2020, 108, 103514. https://doi.org/10.1016/j.cemconcomp.2020.103514

    Article  CAS  Google Scholar 

  40. D. Qian, L. Bao, M. Takatera, K. Kemmochi and A. Yamanaka, Fiber-Reinforced Polymer Composite Materials with High Specific Strength and Excellent Solid Particle Erosion Resistance, Wear, 2010, 268(3–4), p 637–642. https://doi.org/10.1016/j.wear.2009.08.038

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Fatih Sultan Mehmet Vakif University, Aluminium Test, Training and Research Center is supported by Istanbul Development Agency (ISTKA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burçin Özbay Kısasöz.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özbay Kısasöz, B., Serhatlı, İ.E. & Bulduk, M.E. Selective Laser Sintering Manufacturing and Characterization of Lightweight PA 12 Polymer Composites with Different Hollow Microsphere Additives. J. of Materi Eng and Perform 31, 4049–4059 (2022). https://doi.org/10.1007/s11665-021-06481-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06481-x

Keywords

Navigation