Skip to main content
Log in

Rapid and green functionalization of multi-walled carbon nanotubes by glucose: structural investigation and the preparation of dopamine-based poly(amide-imide) composites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Functionalization of multi-walled carbon nanotubes (MWCNTs) by glucose was performed through esterification reaction. The reaction was carried out in water, in the presence of N,N′-carbonyldiimidazole as a catalyst. Glucose-functionalized MWCNTs (MWCNTs-Gl) were characterized by a set of methods including Fourier-transform infrared spectroscopy, X-ray diffraction, field emission scanning, and transmission electron microscopy. Thermogravimetric analysis (TGA) results also demonstrated the presence of organic portions of the functionalized MWCNTs. MWCNT-Gl/poly(amide-imide) (PAI) composite films with different MWCNTs-Gl content (5, 10, and 15 wt%) were prepared by ultrasonication-assisted solution blending method. Microscopic observations showed that the dispersion of the MWCNTs-Gl was improved by the organic groups on the MWCNT surface and functional groups on the PAI. TGA results showed that the hybrid films exhibited a good thermal stability. According to mechanical tensile tests, the tensile strength and the Young’s modulus of the MWCNT-Gl/PAI composites were increased with increasing MWCNTs-Gl content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  2. Andrews R, Weisenberger M (2004) Carbon nanotube polymer composites. Curr Opin Solid State Mater Sci 8:31–37

    Article  CAS  Google Scholar 

  3. Barski M, Kędziora P, Chwał M (2013) Carbon nanotube/polymer nanocomposites: a brief modeling overview. Key Eng Mater 542:29–42

    Article  Google Scholar 

  4. Kwon SY, Kwon IM, Kim Y-G, Lee S, Seo Y-S (2013) A large increase in the thermal conductivity of carbon nanotube/polymer composites produced by percolation phenomena. Carbon 55:285–290

    Article  CAS  Google Scholar 

  5. Shanmugharaj AM, Hun Ryu S (2013) Influence of aminosilane-functionalized carbon nanotubes on the rheometric, mechanical, electrical and thermal degradation properties of epoxidized natural rubber nanocomposites. Polym Int 62(10):1433–1441

    Article  CAS  Google Scholar 

  6. Mallakpour S, Zadehnazari A (2014) Thermal and mechanical stabilities of composite films from thiadiazol bearing poly(amide-thioester-imide) and multiwall carbon nanotubes by solution compounding. Polym Bull 71(1):207–225

    Article  CAS  Google Scholar 

  7. Mun SC, Kim M, Prakashan K, Jung HJ, Son Y, Park OO (2014) A new approach to determine rheological percolation of carbon nanotubes in microstructured polymer matrices. Carbon 67:64–71

    Article  CAS  Google Scholar 

  8. Kong KTS, Mariatti M, Rashid AA, Busfield JJC (2012) Effect of processing methods and functional groups on the properties of multi-walled carbon nanotube filled poly(dimethyl siloxane) composites. Polym Bull 69(8):937–953

    Article  CAS  Google Scholar 

  9. Semaan C, Pecastaings G, Schappacher M, Soum A (2012) The preparation of carbon nanotube/poly(ethylene oxide) composites using amphiphilic block copolymers. Polym Bull 68(2):465–481

    Article  CAS  Google Scholar 

  10. Mallakpour S, Zadehnazari A (2013) The production of functionalized multiwall carbon nanotube/amino acid-based poly(amide-imide) composites containing a pendant dopamine moiety. Carbon 56:27–37

    Article  CAS  Google Scholar 

  11. Saha S, Saha U, Singh JP, Goswami TH (2013) Thermal and mechanical properties of homogeneous ternary nanocomposites of regioregular poly(3-hexylthiophene)-wrapped multiwalled carbon nanotube dispersed in thermoplastic polyurethane: Dynamic- and thermomechanical analysis. J Appl Polym Sci 128(3):2109–2120

    CAS  Google Scholar 

  12. Song ZX, Ding W, Si JH, Yun F, Liu CL, Zhu J, Hou X (2013) Synthesis and semiconductor characteristics of poly[(2-methoxy, 5-octoxy) 1,4-phenylenevinylene-carbon nanotube composites. Adv Mater Res 651:159–162

    Article  Google Scholar 

  13. Szentes A, Varga C, Horvath G, Bartha L, Konya Z, Haspel H, Szel J, Kukovecz A (2012) Electrical resistivity and thermal properties of compatibilized multi-walled carbon nanotube/polypropylene composites. Express Polym Lett 6(6):494–502

    Article  CAS  Google Scholar 

  14. Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Carbon nanotube-polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35(3):357–401

    Article  CAS  Google Scholar 

  15. Sahoo NG, Rana S, Cho JW, Li L, Chan SH (2010) Polymer nanocomposites based on functionalized carbon nanotubes. Prog Polym Sci 35(7):837–867

    Article  CAS  Google Scholar 

  16. Kuzmany H, Kukovecz A, Simon F, Holzweber M, Kramberger C, Pichler T (2004) Functionalization of carbon nanotubes. Synth Met 141(1):113–122

    Article  CAS  Google Scholar 

  17. Leinonen H, Pettersson M, Lajunen M (2011) Water-soluble carbon nanotubes through sugar azide functionalization. Carbon 49(4):1299–1304

    Article  CAS  Google Scholar 

  18. Murugan E, Vimala G (2011) Effective functionalization of multiwalled carbon nanotube with amphiphilic poly(propyleneimine) dendrimer carrying silver nanoparticles for better dispersability and antimicrobial activity. J Colloid Int Sci 357(2):354–365

    Article  CAS  Google Scholar 

  19. Das S, Irin F, Tanvir Ahmed HS, Cortinas AB, Wajid AS, Parviz D, Jankowski AF, Kato M, Green MJ (2012) Non-covalent functionalization of pristine few-layer graphene using triphenylene derivatives for conductive poly(vinyl alcohol) composites. Polymer 53(12):2485–2494

    Article  CAS  Google Scholar 

  20. Koysuren O, Karaman M, Ozyurt D (2013) Effect of noncovalent chemical modification on the electrical conductivity and tensile properties of poly(methyl methacrylate)/carbon nanotube composites. J Appl Polym Sci 127(6):4557–4563

    Article  CAS  Google Scholar 

  21. Martinez-Hernandez AL, Velasco-Santos C, Castano VM (2010) Carbon nanotubes composites: processing, grafting and mechanical and thermal properties. Curr Nanosci 6(1):12

    Article  CAS  Google Scholar 

  22. Mallakpour S, Hatami M, Ensafi AA, Karimi-Maleh H (2011) Synthesis and characterization of novel dopamine-derivative: application of modified multi-wall carbon nanotubes paste electrode for electrochemical investigation. Chin Chem Lett 22(2):185–188

    Article  CAS  Google Scholar 

  23. Mallakpour S, Hajipour AR, Hassan Shahmohammadi M (2003) Direct polycondensation of N-trimellitylimido-l-isoleucine with aromatic diamines. J Appl Polym Sci 89(1):116–122

    Article  CAS  Google Scholar 

  24. Mallakpour S, Zadehnazari A (2013) One-pot synthesis of glucose functionalized multi-walled carbon nanotubes: dispersion in hydroxylated poly(amide-imide) composites and their thermo-mechanical properties. Polymer 54(23):6329–6338

    Article  CAS  Google Scholar 

  25. Mallakpour S, Zadehnazari A (2011) Advances in synthetic optically active condensation polymers—a review. Express Polym Lett 5(2):142–181

    Article  CAS  Google Scholar 

  26. Mallakpour S, Zadehnazari A (2012) Synergic effects of molten ionic liquid and microwave irradiation in preparation of optically active nanostructured poly(amide-imide)s containing amino acid and dopamine moiety. Polym Plast Technol Eng 51(11):1090–1096

    Article  CAS  Google Scholar 

  27. Mallakpour S, Zadehnazari A (2013) Functionalization of multi-wall carbon nanotubes with amino acid and its influence on the properties of thiadiazol bearing poly(amide-thioester-imide) composites. Synth Met 169:1–11

    Article  CAS  Google Scholar 

  28. Mallakpour S, Zadehnazari A (2014) A facile, efficient, and rapid covalent functionalization of multi-walled carbon nanotubes with natural amino acids under microwave irradiation. Prog Org Coat 77(3):679–684

    Article  CAS  Google Scholar 

  29. Mallakpour S, Zadehnazari A (2014) A convenient strategy to functionalize carbon nanotubes with ascorbic acid and its effect on the physical and thermomechanical properties of poly(amide-imide) composites. J Solid State Chem 211:136–145

    Article  CAS  Google Scholar 

  30. Lee H-J, Oh S-J, Choi J-Y, Kim JW, Han J, Tan L-S, Baek J-B (2005) In situ synthesis of poly(ethylene terephthalate) (PET) in ethylene glycol containing terephthalic acid and functionalized multiwalled carbon nanotubes (MWNTs) as an approach to MWNT/PET nanocomposites. Chem Mater 17(20):5057–5064

    Article  CAS  Google Scholar 

  31. Hsiao S-H, Guo W, Lee W-F, Kung Y-C, Lee Y-J (2011) Synthesis and characterization of electrochromic poly(amide-imide)s bearing methoxy-substituted triphenylamine units. Mater Chem Phys 130(3):1086–1093

    Article  CAS  Google Scholar 

  32. Perez-Cabero M, Rodrıguez-Ramos I, Guerrero-Ruız A (2003) Characterization of carbon nanotubes and carbon nanofibers prepared by catalytic decomposition of acetylene in a fluidized bed reactor. J Catal 215(2):305–316

    Article  CAS  Google Scholar 

  33. Amiri A, Maghrebi M, Baniadam M, Zeinali Heris S (2011) One-pot, efficient functionalization of multi-walled carbon nanotubes with diamines by microwave method. Appl Surf Sci 257(23):10261–10266

    Article  CAS  Google Scholar 

  34. Huxtable ST, Cahill DG, Shenogin S, Xue L, Ozisik R, Barone P, Usrey M, Strano MS, Siddons G, Shim M (2003) Interfacial heat flow in carbon nanotube suspensions. Nat Mater 2(11):731–734

    Article  CAS  Google Scholar 

  35. Carty P, White S (1994) Flammability of acrylonitrile-butadiene-styrene/poly(vinyl chloride) blends; limiting oxygen index data. Polymer 35(25):5595–5596

    Article  CAS  Google Scholar 

  36. Van Krevelen D (1975) Some basic aspects of flame resistance of polymeric materials. Polymer 16(8):615–620

    Article  Google Scholar 

  37. Johnson P (1974) A general correlation of the flammability of natural and synthetic polymers. J Appl Polym Sci 18(2):491–504

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is performed under the support of the Research Affairs Division of Isfahan University of Technology (IUT), National Elite Foundation (NEF), and Center of Excellency in Sensors and Green Chemistry Research (IUT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shadpour Mallakpour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mallakpour, S., Zadehnazari, A. Rapid and green functionalization of multi-walled carbon nanotubes by glucose: structural investigation and the preparation of dopamine-based poly(amide-imide) composites. Polym. Bull. 71, 2523–2542 (2014). https://doi.org/10.1007/s00289-014-1205-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-014-1205-3

Keywords

Navigation