Skip to main content
Log in

Effect of processing methods and functional groups on the properties of multi-walled carbon nanotube filled poly(dimethyl siloxane) composites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Pristine and functionalized multi-walled carbon nanotubes (MWCNTs) filled poly(dimethyl siloxane) (PDMS) composites were produced by two different methods, namely the solution mixing method and the mini-extruder method. The composites produced using the mini-extruder exhibit relatively higher tensile strength and higher thermal conductivity due to better nanotubes dispersion. On the other hand, the composites prepared via solution mixing have higher electrical conductivity and better thermal stability due to the high aspect ratio of nanotubes. Scanning electron micrographs of composites fracture surface revealed that composites produced by mini-extruder resulted shorter nanotube length, thus lowering the aspect ratio of MWCNTs. In general, functionalization of nanotubes increases the tensile strength, thermal conductivity, and thermal stability of the PDMS composites due to the improved interfacial adhesion and nanotubes dispersion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  2. Thostenson ET, Ren Z, Chou T-W (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61(13):1899–1912. doi:10.1016/s0266-3538(01)00094-x

    Article  CAS  Google Scholar 

  3. Zhou Z, Wang S, Lu L, Zhang Y, Zhang Y (2008) Functionalization of multi-wall carbon nanotubes with silane and its reinforcement on polypropylene composites. Compos Sci Technol 68(7–8):1727–1733. doi:10.1016/j.compscitech.2008.02.003

    Article  CAS  Google Scholar 

  4. Sandler J, Shaffer MSP, Prasse T, Bauhofer W, Schulte K, Windle AH (1999) Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties. Polymer 40(21):5967–5971. doi:10.1016/s0032-3861(99)00166-4

    Article  CAS  Google Scholar 

  5. Chua TP, Mariatti M, Azizan A, Rashid AA (2010) Effects of surface-functionalized multi-walled carbon nanotubes on the properties of poly(dimethyl siloxane) nanocomposites. Compos Sci Technol 70(4):671–677. doi:10.1016/j.compscitech.2009.12.023

    Article  CAS  Google Scholar 

  6. Hong J, Lee J, Hong CK, Shim SE (2010) Effect of dispersion state of carbon nanotube on the thermal conductivity of poly(dimethyl siloxane) composites. Curr Appl Phys 10(1):359–363. doi:10.1016/j.cap.2009.06.028

    Article  Google Scholar 

  7. Wu C-L, Lin H-C, Hsu J-S, Yip M-C, Fang W (2009) Static and dynamic mechanical properties of polydimethylsiloxane/carbon nanotube nanocomposites. Thin Solid Films 517(17):4895–4901. doi:10.1016/j.tsf.2009.03.146

    Article  CAS  Google Scholar 

  8. Chen X, Wang J, Lin M, Zhong W, Feng T, Chen J, Xue F (2008) Mechanical and thermal properties of epoxy nanocomposites reinforced with amino-functionalized multi-walled carbon nanotubes. Mater Sci Eng A 492(1–2):236–242. doi:10.1016/j.msea.2008.04.044

    Google Scholar 

  9. Yang K, Gu M, Guo Y, Pan X, Mu G (2009) Effects of carbon nanotube functionalization on the mechanical and thermal properties of epoxy composites. Carbon 47(7):1723–1737. doi:10.1016/j.carbon.2009.02.029

    Article  CAS  Google Scholar 

  10. Wang Z, Ciselli P, Peijs T (2007) The extraordinary reinforcing efficiency of single-walled carbon nanotubes in oriented poly(vinyl alcohol) tapes. Nanotechnology 18(45):455709. doi:10.1088/0957-4484/18/45/455709

    Article  Google Scholar 

  11. Deng H, Bilotti E, Zhang R, Peijs T (2010) Effective reinforcement of carbon nanotubes in polypropylene matrices. J Appl Polym Sci 118(1):30–41. doi:10.1002/app.30783

    CAS  Google Scholar 

  12. Kathi J, Rhee K-Y, Lee JH (2009) Effect of chemical functionalization of multi-walled carbon nanotubes with 3-aminopropyltriethoxysilane on mechanical and morphological properties of epoxy nanocomposites. Compos A 40(6–7):800–809

    Article  Google Scholar 

  13. Lee Y (2003) Surface properties of fluorinated single-walled carbon nanotubes. J Fluorine Chem 120(2):99–104. doi:10.1016/s0022-1139(02)00316-0

    Article  CAS  Google Scholar 

  14. Kim YJ, Shin TS, Choi HD, Kwon JH, Chung Y-C, Yoon HG (2005) Electrical conductivity of chemically modified multiwalled carbon nanotube/epoxy composites. Carbon 43(1):23–30. doi:10.1016/j.carbon.2004.08.015

    Article  Google Scholar 

  15. Li J, Ma PC, Chow WS, To CK, Tang BZ, Kim J-K (2007) Correlations between percolation threshold, dispersion state, and aspect ratio of carbon nanotubes. Adv Funct Mater 17(16):3207–3215. doi:10.1002/adfm.200700065

    Article  CAS  Google Scholar 

  16. Song YS, Youn JR (2005) Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites. Carbon 43(7):1378–1385. doi:10.1016/j.carbon.2005.01.007

    Article  CAS  Google Scholar 

  17. Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Carbon nanotube–polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35(3):357–401. doi:10.1016/j.progpolymsci.2009.09.003

    Article  CAS  Google Scholar 

  18. Xing Y, Li L, Chusuei CC, Hull RV (2005) Sonochemical oxidation of multiwalled carbon nanotubes. Langmuir 21(9):4185–4190. doi:10.1021/la047268e

    Article  CAS  Google Scholar 

  19. Kim JY (2009) Carbon nanotube-reinforced thermotropic liquid crystal polymer nanocomposites. Materials 2(4):1955–1974. doi:10.3390/ma2041955

    Article  CAS  Google Scholar 

  20. Bandarian M, Shojaei A, Rashidi AM (2011) Thermal, mechanical and acoustic damping properties of flexible open-cell polyurethane/multi-walled carbon nanotube foams: effect of surface functionality of nanotubes. Polym Int 60(3):475–482

    Article  CAS  Google Scholar 

  21. Song P, Xu L, Guo Z, Zhang Y, Fan Z (2008) Flame-retardant-wrapped carbon nanotubes for simultaneously improving the flame retardancy and mechanical properties of polypropylene. J Mater Chem 18(42):5083–5091

    Article  CAS  Google Scholar 

  22. Wang S, Liang R, Wang B, Zhang C (2009) Dispersion and thermal conductivity of carbon nanotube composites. Carbon 47(1):53–57. doi:10.1016/j.carbon.2008.08.024

    Article  CAS  Google Scholar 

  23. Last BJ, Thouless DJ (1971) Percolation theory and electrical conductivity. Phys Rev Lett 27(25):1719

    Article  CAS  Google Scholar 

  24. Ciselli P, Lu L, Busfield JJC, Peijs T (2010) Piezoresistive polymer composites based on EPDM and MWNTs for strain sensing applications. e-Polymers 14

  25. Bai J, Allaoui A (2003) Effect of the length and the aggregate size of MWNTs on the improvement efficiency of the mechanical and electrical properties of nanocomposites—experimental investigation. Compos A 34(8):689–694. doi:10.1016/s1359-835x(03)00140-4

    Article  Google Scholar 

  26. Gojny FH, Wichmann MHG, Fiedler B, Kinloch IA, Bauhofer W, Windle AH, Schulte K (2006) Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites. Polymer 47(6):2036–2045. doi:10.1016/j.polymer.2006.01.029

    Article  CAS  Google Scholar 

  27. Kohlmeyer RR, Javadi A, Pradhan B, Pilla S, Setyowati K, Chen J, Gong S (2009) Electrical and dielectric properties of hydroxylated carbon nanotube–elastomer composites. J Phys Chem C 113(41):17626–17629. doi:10.1021/jp901082c

    Article  CAS  Google Scholar 

  28. Sulong AB, Muhamad N, Sahari J, Ramli R, Deros BM, Park J (2009) Electrical conductivity behavior of chemical functionalized MWCNTs epoxy nanocomposites. Eur J Scientific Res 29(1):13–21

    Google Scholar 

  29. Wang J, Fang Z, Gu A, Xu L, Liu F (2006) Effect of amino-functionalization of multi-walled carbon nanotubes on the dispersion with epoxy resin matrix. J Appl Polym Sci 100(1):97–104. doi:10.1002/app.22647

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the British Council for sponsoring this project via the Prime Minister’s Initiative Grant (PMI-2), Grant No. 6050180. The authors also thank Queen Mary University of London (QMUL, UK) for supporting this project. In addition, K. T. S. Kong would like to acknowledge Universiti Sains Malaysia (USM) for providing financial assistance via the USM Fellowship Scheme and Research University Postgraduate Research Grant Scheme (USM-RU-PRGS), Grant No. 8032017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mariatti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kong, K.T.S., Mariatti, M., Rashid, A.A. et al. Effect of processing methods and functional groups on the properties of multi-walled carbon nanotube filled poly(dimethyl siloxane) composites. Polym. Bull. 69, 937–953 (2012). https://doi.org/10.1007/s00289-012-0777-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-012-0777-z

Keywords

Navigation