Skip to main content
Log in

Derivation of the bacterial run-and-tumble kinetic equation from a model with biochemical pathway

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Kinetic-transport equations are, by now, standard models to describe the dynamics of populations of bacteria moving by run-and-tumble. Experimental observations show that bacteria increase their run duration when encountering an increasing gradient of chemotactic molecules. This led to a first class of models which heuristically include tumbling frequencies depending on the path-wise gradient of chemotactic signal. More recently, the biochemical pathways regulating the flagellar motors were uncovered. This knowledge gave rise to a second class of kinetic-transport equations, that takes into account an intra-cellular molecular content and which relates the tumbling frequency to this information. It turns out that the tumbling frequency depends on the chemotactic signal, and not on its gradient. For these two classes of models, macroscopic equations of Keller-Segel type, have been derived using diffusion or hyperbolic rescaling. We complete this program by showing how the first class of equations can be derived from the second class with molecular content after appropriate rescaling. The main difficulty is to explain why the path-wise gradient of chemotactic signal can arise in this asymptotic process. Randomness of receptor methylation events can be included, and our approach can be used to compute the tumbling frequency in presence of such a noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Berthelin F, Mauser NJ, Poupaud F (2007) high-field limit from a kinetic equation to multidimensional scalar conservation laws. J Hyp Diff Eq 4(1):123–145

    Article  MathSciNet  MATH  Google Scholar 

  • Bournaveas N, Calvez V (2009) Critical mass phenomenon for a chemotaxis kinetic model with spherically symmetric initial data. Ann Inst H Poincaré Anal Non Linéaire 26(5):1871–1895

    Article  MathSciNet  MATH  Google Scholar 

  • Bournaveas N, Calvez V (2008) Global existence for the kinetic chemotaxis model without pointwise memory effects, and including internal variables. Kinet Relat Models 1(1):29–48

    Article  MathSciNet  MATH  Google Scholar 

  • Bournaveas N, Calvez V, Gutièrrez S, Perthame B (2008) Global existence for a kinetic model of chemotaxis via dispersion and Strichartz estimates. Comm PDE 33:79–95

    Article  MathSciNet  MATH  Google Scholar 

  • Chalub F, Markowich PA, Perthame B, Schmeiser C (2004) Kinetic models for chemotaxis and their drift-diffusion limits. Monatsh Math 142:123–141

    Article  MathSciNet  MATH  Google Scholar 

  • Dolak Y, Schmeiser C (2005) Kinetic models for chemotaxis: Hydrodynamic limits and spatio-temporal mechanisms. J Math Biol 51:595–615

    Article  MathSciNet  MATH  Google Scholar 

  • Endres RG (2013) Physical principles in sensing and signaling, with an introduction to modeling in biology. Oxford University Press, Oxford

    Google Scholar 

  • Erban R, Othmer H (2004) From individual to collective behaviour in bacterial chemotaxis. SIAM J Appl Math 65(2):361–391

    Article  MathSciNet  MATH  Google Scholar 

  • Erban R, Othmer H (2007) Taxis equations for amoeboid cells. J Math Biol 54:847–885

    Article  MathSciNet  MATH  Google Scholar 

  • Hazelbauer GL (2012) Bacterial chemotaxis: the early years of molecular studies. Annu Rev Microbiol 66:285–303

    Article  Google Scholar 

  • Hillen T, Painter K (2012) Transport and anisotropic diffusion models for movement in oriented habitats. In: Lewis MA, Maini P, Petrowskii S (eds) Dispersal, individual movement and spatial ecology: a mathematical perspective. Springer, Heidelberg, pp 177–222

    Google Scholar 

  • Hwang HJ, Kang K, Stevens A (2005) Global solutions of nonlinear transport equations for chemosensitive movement. SIAM J Math Anal 36:1177–1199

    Article  MathSciNet  MATH  Google Scholar 

  • James F, Vauchelet N (2013) Chemotaxis : from kinetic equations to aggregate dynamics. Nonlinear Diff Eq Appl 20(1):101–127

    Article  MathSciNet  MATH  Google Scholar 

  • Jiang L, Ouyang Q, Tu Y (2010) Quantitative modeling of Escherichia coli chemotactic motion in environments varying in space and time. PLoS Comput Biol 6:e1000735

    Article  MathSciNet  Google Scholar 

  • Kalinin YV, Jiang L, Tu Y, Wu M (2009) Logarithmic sensing in Escherichia coli bacterial chemotaxis. Biophys J 96(6):2439–2448

    Article  Google Scholar 

  • Locsei JT (2007) Persistence of direction increases the drift velocity of run and tumble chemotaxis. J Math Biol 55(1):41–60

    Article  MathSciNet  MATH  Google Scholar 

  • Liao J (2016) Global solution for a kinetic chemotaxis model with internal dynamics and its fast adaptation limit. J Diff Equ 259(11):6432–6458

    Article  MathSciNet  MATH  Google Scholar 

  • Othmer H, Dunbar S, Alt W (1988) Models of dispersal in biological systems. J Math Biol 26:263–298

    Article  MathSciNet  MATH  Google Scholar 

  • Othmer HG, Hillen T (2002) The diffusion limit of transport equations II: chemotaxis equations. SIAM J Appl Math 62:122–1250

    Article  MathSciNet  MATH  Google Scholar 

  • Othmer HG, Xin X, Xue C (2013) Excitation and adaptation in bacteria-a model signal transduction system that controls taxis and spatial pattern formation. Int J Mol Sci 14(5):9205–9248

    Article  Google Scholar 

  • Porter SL, Wadhams GH, Armitage JP (2008) Rhodobacter sphaeroides: complexity in chemotactic signalling. Trends Microbiol 16(6):251–260

    Article  Google Scholar 

  • Rao CV, Kirby JR, Arkin AP (2004) Design and diversity in bacterial chemotaxis: a comparative study in Escherichia coli and Bacillus subtilis. PLoS Biol 2(2):E49

    Article  Google Scholar 

  • Saragosti J, Calvez V, Bournaveas N, Buguin A, Silberzan P, Perthame B (2010) Mathematical description of bacterial traveling pulses. PLoS Comput Biol 6(8):e1000890. doi:10.1371/journal.pcbi.1000890

    Article  MathSciNet  Google Scholar 

  • Saragosti J, Calvez V, Bournaveas N, Perthame B, Buguin A, Silberzan P (2011) Directional persistence of chemotactic bacteria in a traveling concentration wave. Proc Natl Acad Sci 108(39):16235-16240

  • Si G, Tang M, Yang X (2014) A pathway-based mean-field model for E. coli chemo- taxis: mathematical derivation and keller-segel limit. Multiscale Model Simul 12(2):907–926

    Article  MathSciNet  MATH  Google Scholar 

  • Si G, Wu T, Ouyang Q, Tu Y (2012) A pathway-based mean-field model for Escherichia coli chemotaxis. Phys Rev Lett 109:048101

    Article  Google Scholar 

  • Tu Y, Shimizu TS, Berg HC (2008) Modeling the chemotactic response of Escherichia coli to time-varying stimuli. Proc Natl Acad Sci USA 105(39):14855–14860

    Article  Google Scholar 

  • Vauchelet N (2010) Numerical simulation of a kinetic model for chemotaxis. Kin Rel Models 3(3):501–528

    Article  MathSciNet  MATH  Google Scholar 

  • Xin X, Othmer HG (2012) A trimer of dimers-based model for the chemotactic signal transduction network in bacterial chemotaxis. Bull Math Biol 74(10):2339–2382

    Article  MathSciNet  MATH  Google Scholar 

  • Xue C, Othmer HG (2009) Multiscale models of taxis-driven patterning in bacterial populations. SIAM J Appl Math 70(1):133–167

    Article  MathSciNet  MATH  Google Scholar 

  • Xue C (2015) Macroscopic equations for bacterial chemotaxis: integration of detailed biochemistry of cell signaling. J Math Biol 70:1–44

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu X, Si G, Deng N, Ouyang Q, Wu T, He Z, Jiang L, Luo C, Tu Y (2012) Frequency-dependent Escherichia coli chemotaxis behavior. Phys Rev Lett 108:128101

    Article  Google Scholar 

Download references

Acknowledgments

Benoît Perthame and Nicolas Vauchelet are partially supported by ANR Kibord-ANR-13-BS01-0004 funded by the French Ministry of Research. Min Tang is partially supported by NSF of Shanghai under Grant 12ZR1445400, NSFC 11301336 and 91330203, and Shanghai Pujiang Program 13PJ140700.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoît Perthame.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perthame, B., Tang, M. & Vauchelet, N. Derivation of the bacterial run-and-tumble kinetic equation from a model with biochemical pathway. J. Math. Biol. 73, 1161–1178 (2016). https://doi.org/10.1007/s00285-016-0985-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-016-0985-5

Keywords

Mathematics Subject Classification

Navigation