Skip to main content

Advertisement

Log in

An Innovative Approach for Biocontrol of Meloidogyne incognita in Ginger Using Potential Bacteria Isolated from Indian Himalayas

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The prevalence of Meloidogyne incognita, a severe root-knot nematode, is alarmingly high in the production of ginger—a main cash crop of Himachal Pradesh, a Himalayan state of India. In order to control this through natural means, the nematicidal potential of plant growth-promoting rhizobacteria (PGPR) against M. incognita was analyzed. This is an effective alternative solution to manage nematode incidence as compared to hazardous chemicals under protected and field cultivation of ginger. In the present study an attempt has been made to isolate, characterize, and identify potential rhizobacteria associated with ginger rhizosphere and endosphere. In total, 169 bacterial isolates were isolated from ginger (Zingiber officinale) rhizosphere and endosphere of 4 different sites of Sirmaur district, screened out for multifarious PGP traits showing positive results. The combined cluster analysis and 16S rRNA genotypic analysis of selected bacterial isolates revealed that Serratia marcescens FS-23, Pseudochrobacter sp. GS-15, Stonotrophomonas pavanii HER-9, Pseudomonas brassicacearum HER-20 and Serratia marcescens IS-2 exhibited highest PGP traits. All tested bacterial isolates were capable of exerting a significant effect on mortality of juvenile M. incognita ranging upto 40–90% in laboratory experiments. Further a consortium of these screened isolates showed 86.67% reduction in gall formation by M. incognita in lab conditions. The remarkable increase to 93.24% with 138.73 q/ha with application of charcoal based bio-formulation of consortium without adding any chemical fertilizer was observed in field trials of Nohradhar of Sirmaur district. An alternative choice as a biocontrol agent as well as for PGP activities, the novel and most robust isolate Serratia marcescens IS-2 had revealed to have a variety of bioactive metabolic products with abilities against nematodes, bacteria, and fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Jabborova D, Annapurna K, Fayzullaeva M, Sulaymonov K, Kadirova D, Jabbarov Z, Sayyed RZ (2022) Isolation and characterization of endophytic bacteria from ginger (Zingiber officinale Rosc.). Ann Phytomed 9:116–121. https://doi.org/10.21276/ap.2020.9.1.14

    Article  CAS  Google Scholar 

  2. Jasim B, Joseph AA, John CJ, Mathew J, Radhakrishnan EK (2014) Isolation and characterization of plant growth promoting endophytic bacteria from the rhizome of Zingiber officinale. 3 Biotech 4(2):197–204. https://doi.org/10.1007/s13205-013-0143-3

    Article  CAS  PubMed  Google Scholar 

  3. Aljohani FS, Omran OA, Ahmed EA, Al-Farraj ES, Elkady EF, Alharbi A, El-Metwaly NM, Barnawi IO, Abu-Dief AM (2023) Design, structural inspection of new bis (1H-benzo [d] imidazol-2-yl) methanone complexes: biomedical applications and theoretical implementations via DFT and docking approaches. Inorg Chem Commun 148:110331. https://doi.org/10.1016/j.inoche.2022.110331

    Article  CAS  Google Scholar 

  4. Gowda AP, Singh D, Singh AK, Sowmya R (2022) Nematicidal potential of plant growth-promoting rhizobacteria against Meloidogyne incognita infesting tomato under protected cultivation. Egypt J Biol Pest Control 32(1):1–3. https://doi.org/10.1186/s41938-022-00643-2

    Article  Google Scholar 

  5. Sagar A, Rathore P, Ramteke PW, Ramakrishna W, Reddy MS, Pecoraro L (2021) Plant growth promoting rhizobacteria, arbuscular mycorrhizal fungi and their synergistic interactions to counteract the negative effects of saline soil on agriculture: key macromolecules and mechanisms. Microorganisms 9(7):1491. https://doi.org/10.3390/microorganisms9071491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Das P, Khan S, Chaudhary AK, AbdulQuadir M, Thaher MI, Al-Jabri H (2019) Potential applications of algae-based bio-fertilizer. Biofertilizers for sustainable agriculture and environment. Springer, Cham, pp 41–65. https://doi.org/10.1007/978-3-030-18933-4_3

    Chapter  Google Scholar 

  7. Subba Rao NS (1999) Soil microorganism and plant growth. Oxford & IBH publishing Co, New Delhi, p 252

    Google Scholar 

  8. Abu-Dief AM, Alotaibi NH, Al-Farraj ES, Qasem HA, Alzahrani S, Mahfouz MK, Abdou A (2022) Fabrication, structural elucidation, theoretical, TD-DFT, vibrational calculation and molecular docking studies of some novel adenine imine chelates for biomedical applications. J Mol Liq 365:119961. https://doi.org/10.1016/j.molliq.2022.119961

    Article  CAS  Google Scholar 

  9. Abu-Dief AM, El-khatib RM, El Sayed SM, Alzahrani S, Alkhatib F, El-Sarrag G, Ismael M (2021) Tailoring, structural elucidation, DFT calculation, DNA interaction and pharmaceutical applications of some aryl hydrazone Mn (II), Cu (II) and Fe (III) complexes. J Mol Struct 1244:131017. https://doi.org/10.1016/j.molstruc.2021.131017

    Article  CAS  Google Scholar 

  10. Abu-Dief AM, Abdel-Rahman LH, Abdelhamid AA, Marzouk AA, Shehata MR, Bakheet MA, Almaghrabi OA, Nafady A (2020) Synthesis and characterization of new Cr (III), Fe (III) and Cu (II) complexes incorporating multi-substituted aryl imidazole ligand: structural, DFT, DNA binding, and biological implications. Spectrochim Acta Part A Mol Biomol Spectrosc 228:117700. https://doi.org/10.1016/j.saa.2019.117700

    Article  CAS  Google Scholar 

  11. Aneja KR (2003) Experiments in microbiology, plant pathology and biotechnology. New age International Publishers, New Delhi, Biochemical activities of microorganisms, p 454

    Google Scholar 

  12. Adnan M, Patel M, Reddy MN, Khan S, Alshammari E, Abdelkareem AM, Hadi S (2016) Isolation and characterization of effective and efficient plant growth-promoting rhizobacteria from rice rhizosphere of diverse paddy fields of Indian soil. ARPN J Agric Biol Sci 11:9–14

    Google Scholar 

  13. Ranganayaki S, Mohan C (1981) Effect of sodium molybdate on microbial fixation of nitrogen. Z Allg Mikrobiol 21:607–610

    Article  CAS  PubMed  Google Scholar 

  14. Birren B, Green ED, Klapholy S, Mazers RM, Roskams J (1997) Genome analysis. Cold spring, Harbon Laboratory press, Cold Spring Harbor, New York, pp 397–454.

  15. Sundaramoorthy S, Balabaskar P (2012) Consortial effect of endophytic and plant growth promoting rhizobacteria for the management of early blight of tomato incited by Alternaria solani. J Plant Pathol Microbiol 3:415–423

    Article  Google Scholar 

  16. Abbassy MA, Abdel-Rasoul MA, Nassar AM, Soliman BS (2017) Nematicidal activity of silver nanoparticles of botanical products against root-knot nematode, Meloidogyne incognita. Arch Phytopathol Plant Protect 50:909–926. https://doi.org/10.1080/03235408.2017.1405608

    Article  CAS  Google Scholar 

  17. El-Deen AN, El-Deeb BA (2018) Effectiveness of silver nanoparticles against root-knot nematode, Meloidogyne incognita infecting tomato under greenhouse conditions. J Agric Sci 10:148–156. https://doi.org/10.5539/jas.v10n2p148

    Article  Google Scholar 

  18. Kumar RS, Ganesh P, Tharmaraj K, Saranraj P (2011) Growth and development of blackgram (Vigna mungo) under foliar application of Panchagavya as organic source of nutrient. Current Botany 2:9–11

    Google Scholar 

  19. Witham FH, Blaydes DF, Devlin RM (1971) Experiments in plant physiology. Van Nostrand Reinhold Co., New York, pp 55–56

    Google Scholar 

  20. Subbiah BV, Asija GL (1956) A rapid procedure for assessment of available nitrogen in soils. Curr Sci 31:196–260

    Google Scholar 

  21. Olsen SR (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate (No. 939). US Dept. of Agriculture

  22. Merwin HD, Peech M (1951) Exchangeability of soil potassium in the sand, silt and clay fractions as influenced by the nature of the complementary exchangeable cation. Soil Sci Soc Am J 15:125–128

    Article  CAS  Google Scholar 

  23. Harrigan WF (1998) Laboratory methods in food microbiology. Gulf Professional Publishing

  24. Day EW Jr, Holzer FJ, Tepe JB, Eckert JW, Kolbezen MJ (1968) Determination of sec-butylamine residues in fruit. J Assoc Off Anal Chem 51(1):39–44. https://doi.org/10.1093/jaoac/51.1.39

    Article  CAS  Google Scholar 

  25. Chen Z, Maartens F, Vega H, Kunene S, Gumede J, Krieger RI (2009) 2,2-bis(4-chlorophenyl)acetic acid (DDA), a water-soluble urine biomarker of DDT metabolism in humans. Int J Toxicol 28(6):528–533. https://doi.org/10.1177/1091581809349862

    Article  CAS  PubMed  Google Scholar 

  26. Yohanes R, Harneti D, Supratman U, Fajriah S, Rudiana T (2023) Phytochemistry and biological activities of Murraya species. Molecules 28(15):5901. https://doi.org/10.3390/molecules28155901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Greim H (2023) Pendimethaline. In: Reference module in biomedical sciences. Elsevier. https://doi.org/10.1016/B978-0-12-824315-2.00496-6

  28. Ding YY, Zhou H, Zhang BQ, Zhang ZJ, Wang GH, Zhang SY, Wu ZR, Wang YR, Liu YQ (2023) Antimicrobial activity of natural and semi-synthetic carbazole alkaloids. Eur J Med Chem 115627. https://doi.org/10.1016/j.ejmech.2023.115627

  29. Herrera-Herrera AV, Asensio-Ramos M, Hernández-Borges J, Rodríguez-Delgado MÁ (2016) Pesticides and herbicides: types, uses, and determination of herbicides. Encyclopedia of Food and Health 326–332. https://doi.org/10.1016/B978-0-12-384947-2.00536-5

  30. Zargar M, Bayat M, Astarkhanova T (2020) Study of postemergence-directed herbicides for redroot pigweed (Amaranthus retroflexus L.) control in winter wheat in southern Russia. J Plant Protect Res 60 (1). https://doi.org/10.24425/jppr.2019.131272

  31. Chowdhary K, Sharma S (2020) Plant growth promotion and biocontrol potential of fungal endophytes in the inflorescence of Aloe vera L. Proc Nat Acad Sci India Sect B Biol Sci 90:1045–1055. https://doi.org/10.1007/s40011-020-01173-3

    Article  CAS  Google Scholar 

  32. Kovač M, Bulaić M, Jakovljević J, Nevistić A, Rot T, Kovač T, Dodlek Šarkanj I, Šarkanj B (2021) Mycotoxins, pesticide residues, and heavy metals analysis of croatian cereals. Microorganisms 9(2):216. https://doi.org/10.3390/microorganisms9020216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Anand U, Pal T, Yadav N, Singh VK, Tripathi V, Choudhary KK, Shukla AK, Sunita K, Kumar A, Bontempi E, Ma Y (2023) Current scenario and future prospects of endophytic microbes: promising candidates for abiotic and biotic stress management for agricultural and environmental sustainability. Microbial Ecol 1–32. https://doi.org/10.1007/s00248-023-02190-1

  34. Zhang L, Zhang W, Li Q, Cui R, Wang Z, Wang Y, Zhang YZ, Ding W, Shen X (2020) Deciphering the root endosphere microbiome of the desert plant Alhagi sparsifolia for drought resistance-promoting bacteria. Appl Environ Microbiol 86(11):e02863-e2919. https://doi.org/10.1128/AEM.02863-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jiao X, Takishita Y, Zhou G, Smith DL (2021) Plant associated rhizobacteria for biocontrol and plant growth enhancement. Front Plant Sci 12:634796. https://doi.org/10.3389/fpls.2021.634796

    Article  PubMed  PubMed Central  Google Scholar 

  36. Chenniappan C, Narayanasamy M, Daniel GM, Ramaraj GB, Ponnusamy P, Sekar J, Vaiyapuri Ramalingam P (2019) Biocontrol efficiency of native plant growth promoting rhizobacteria against rhizome rot disease of turmeric. Biol Control 129:55–64. https://doi.org/10.1016/j.biocontrol.2018.07

    Article  CAS  Google Scholar 

  37. Swaroopa ZM, Madhuri RJ (2021) Bio-control activity of plant growth promoting rhizobacteria on Sclerotium rolfsii. Plant Arch 21(1):379–83. https://doi.org/10.51470/PLANTARCHIVES.2021.v21.no1.052

  38. Jorjani M, Heydari A, Zamanizadeh HR, Rezaee S, Naraghi L (2011) Development of Pseudomonas fluorescens and Bacillus coagulans based bioformulations using organic and inorganic carriers and evaluation of their influence on growth parameters of sugar beet. J Biopest 4(2):180

    CAS  Google Scholar 

  39. Vishwakarma D, Thakur JK, Gupta SC (2017) A study on nitrogen fixing ability of soil isolates and quantitative estimation of K solubilization by soil and plant isolates. Int J Curr Microbiol App Sci 6:2641–2647

    Article  Google Scholar 

  40. French E, Kaplan I, Iyer-Pascuzzi A, Nakatsu CH, Enders L (2021) Emerging strategies for precision microbiome management in diverse agroecosystems. Nature Plants 7(3):256–267. https://doi.org/10.1038/s41477-020-00830-9

    Article  PubMed  Google Scholar 

  41. Mafia RG, Alfenas AC, Maffia LA, Ferreira EM, Binoti DHB, Mafia GMV (2009) Plant growth promoting rhizobacteria as agents in the biocontrol of eucalyptus mini-cutting rot. Trop Plant Pathol 34:10–17

    Article  Google Scholar 

  42. Mhatre PH, Karthik CK, Divya KL, Venkatasalam EP, Srinivasan S, Ramkumar G, Saranya C, Shanmuganathan R (2019) Plant growth promoting rhizobacteria (PGPR): a potential alternative tool for nematodes bio-control. Biocatal Agric Biotechnol 17:119–128

    Article  Google Scholar 

  43. Yeon J, Park AR, Kang M, Nguyen VT, Lee Y, Kim HM, Park HW, Ha P, Koo Y, Kim JC (2022) Control of root-knot nematodes on tomato by eliciting resistance through Aspergillus niger-derived oxalic acid. J Pest Sci 5:1–3. https://doi.org/10.1007/s10340-022-01573-6

    Article  CAS  Google Scholar 

  44. Ashoub AH, Amara MT (2010) Biocontrol activity of some bacterial genera against root-knot nematode, Meloidogyne incognita. J Am Sci 6:1–8

    Google Scholar 

  45. Yang J, Liang L, Li J, Zhang K (2013) Nematicidal enzymes from microorganisms and their applications. Appl Microbiol Biotechnol 97:7081–7095

    Article  CAS  PubMed  Google Scholar 

  46. Zhou D, Feng H, Schuelke T, De Santiago A, Zhang Q, Zhang J, Luo C, Wei L (2019) Rhizosphere microbiomes from root knot nematode non-infested plants suppress nematode infection. Microb Ecol 78:470–481. https://doi.org/10.1007/s00248-019-01319-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sharma P, Jambhulkar PP, Raja M, Sain SK, Javeria S (2020) Trichoderma spp. in consortium and their rhizospheric interactions. In: Sharma A, Sharma P (eds) Trichoderma: host pathogen interactions and applications. Springer, Singapore, pp 267–292. https://doi.org/10.1007/978-981-15-3321-1_14

    Chapter  Google Scholar 

  48. Arora NK, Mehnaz S, Balestrini R (2016) Bioformulations: for sustainable agriculture. Springer, Berlin

    Google Scholar 

  49. Nagpal S, Sharma P, Kumawat KC (2021) Microbial bioformulations: revisiting role in sustainable agriculture. In: Rakshit A, Meena VJ, Parihar M, Singh HB, Singh AK (eds) Biofertilizers. Woodhead Publishing, USA, pp 329–346. https://doi.org/10.1016/B978-0-12-821667-5.00016-6

    Chapter  Google Scholar 

  50. Suryadi Y, Susilowati D, Riana E, Mubarik NR (2013) Management of rice blast disease (Pyricularia oryzae) using formulated bacterial consortium. Emirates J Food Agric 349–57. https://doi.org/10.9755/ejfa.v25i5.12564

  51. Stamenov ADR, Djuric SS, Jafari TH (2018) Effect of plant growth promoting rhizobacteria on the germination and early growth of onion (Allium Cepa). Int J Agric Biol Eng 12:80321

    Google Scholar 

  52. Purwanto AT, Mujiono WT, Widjonarko BR (2019) The effect of plant growth promotion rhizobacteria inoculation to agronomic traits of aromatic rice (Oryza sativa CV. Inpago Unsoed 1) Earth Environ Sci 255:1–8

  53. Chitra MK (2014) Influence of PGPR on pigment concentration on Glycine max (L). Int J Curr Microbiol App Sci 3(8):1110–1115

    Google Scholar 

  54. Elekhtyar NM (2015) Efficiency of Pseudomonas fluorescens as plant growth-promoting rhizobacteria (PGPR) for the enhancement of seedling vigor, nitrogen uptake, yield and its attributes of rice (Oryza sativa L.). Int J Sci Res Agric Sci 2:57–67

    Google Scholar 

  55. Khan N, Bano A, Zandi P (2018) Effects of exogenously applied plant growth regulators in combination with PGPR on the physiology and root growth of chickpea (Cicer arietinum) and their role in drought tolerance. J Plant Interact 13:239–247

    Article  CAS  Google Scholar 

  56. Shakeri E, Modarres-Sanavy SA, Amini Dehaghi M, Tabatabaei SA, Moradi-Ghahderijani M (2016) Improvement of yield, yield components and oil quality in sesame (Sesamum indicum L.) by N-fixing bacteria fertilizers and urea. Arch Agron Soil Sci 62(4):547–560. https://doi.org/10.1080/03650340.2015.1064901

    Article  CAS  Google Scholar 

  57. Gulnaz Y, Fathima PS, Denesh GR, Kulmitra AK, Shivrajkumar HS (2017) Effect of plant growth promoting Rhizobacteria (PGPR) and PSB on root parameters, nutrient uptake and nutrient use efficiency of irrigated maize under varying levels of phosphorus. J Entomol Zoology Study 5:166–169

    Google Scholar 

  58. Saha SP, Mazumdar D (2022) Potential of plant growth promoting rhizobacteria for enhancement of plant growth and its role in improving soil health under abiotic stress. Plant stress: challenges and management in the new decade. Springer International Publishing, Cham, pp 311–320

    Chapter  Google Scholar 

  59. Hassan MK, McInroy JA, Jones J, Shantharaj D, Liles MR, Kloepper JW (2019) Pectin-rich amendment enhances soybean growth promotion and nodulation mediated by Bacillus velezensis strains. Plants 8:120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kumar S, Hariprabha S, Kamalakannan S, Sudhagar R, Sanjeevkumar K (2020) Effect of panchagavya on germination and seedling growth of balsam (Impatiens balsamina). Plant Arch 20(1):3735–3737

    Google Scholar 

  61. Girija D, Deepa K, Xavier F, Antony I, Shidhi PR (2012) Analysis of cow dung microbiota—a metagenomic approach. Indian J Biotechnol 12:372–378

    Google Scholar 

  62. Swaminathan C, Surya R, Subramanian E, Arunachalam P (2023) Challenges in pulses productivity and agronomic opportunities for enhancing growth and yield in blackgram [Vigna mungo (L.) Hepper]: a review. Legume Res Int J 1:9

    Google Scholar 

  63. Basu A, Prasad P, Das SN, Kalam S, Sayyed RZ, Reddy MS, El Enshasy H (2021) Plant growth promoting rhizobacteria (PGPR) as green bioinoculants: recent developments, constraints, and prospects. Sustainability 13(3):1140. https://doi.org/10.3390/su13031140

    Article  CAS  Google Scholar 

  64. Rastogi S, Mittal V, Singh A (2020) In vitro evaluation of probiotic potential and safety assessment of Lactobacillus mucosae strains isolated from donkey’s lactation. Probiot Antimicrob Proteins 12:1045–1056. https://doi.org/10.1007/s12602-019-09610-0

    Article  CAS  Google Scholar 

  65. Patel R, Borada DN, Patel A, Shah NJ (2023) Isolation and characterization of robust plant growth-promoting rhizobacteria from lignite mines, Gujarat. J Appl Biol Biotechnol 11(2):226–237. https://doi.org/10.7324/JABB.2023.110225

    Article  CAS  Google Scholar 

  66. Ragvendran C, Natarajan D (2017) Serratia marcescens (Enterobacteriaceae): an alternate biocontrol agent for mosquito vectors Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Pharmacol Toxicol Biomed Rep 3(1). https://doi.org/10.5530/PTB.2017.3.3

Download references

Acknowledgements

The authors are thankful to the farmers of Nohradhar region, Sirmaur, to provide us fields to work in for this study.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

Author NK made substantial contribution to the design, analysis and interpretation of work, PS drafted the work whereas NS supervised the research work and reviewed the manuscript.

Corresponding author

Correspondence to Pooja Sharma.

Ethics declarations

Competing interests

The authors have no competing interests to declare that are relevant to the content of this article.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14695 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaushal, N., Sharma, N. & Sharma, P. An Innovative Approach for Biocontrol of Meloidogyne incognita in Ginger Using Potential Bacteria Isolated from Indian Himalayas. Curr Microbiol 80, 381 (2023). https://doi.org/10.1007/s00284-023-03496-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03496-6

Navigation