Skip to main content
Log in

Lacticaseibacillus paracasei LB12, a Potential Probiotic Isolated from Traditional Iranian Fermented Milk (Doogh)

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

In Iran, dairy-based fermented foods, like yogurt, cheese, fermented milk, buttermilk, kashk, butter, and Doogh are essential dietary components. Doogh is typically made using fermented yogurt or buttermilk. However, a literature review revealed a lack of research on extracting probiotics from Doogh during processing. As dairy products contain lactic acid bacteria, the aim was to isolate and identify them using culture and PCR-sequencing techniques. Samples of traditional Doogh were collected throughout the Chaharmahal Bakhtiari province of Iran. A specific number of strains have been isolated and among them, the strain lb12 was selected for further characterization based on its probiotic properties. Probiotic properties like adhesion capability, antagonistic activity, resistance to the simulated stomach and intestinal fluids, pH, and bile salt were assessed according to National Standard ISO 19459 of Iran. The lb12 strain was identified as Lacticaseibacillus paracasei by partial 16 rDNA sequence analysis. This L. paracasei strain demonstrated its in vitro resilience to stomach conditions with 58.04% survival at pH 3 and more than 50% resistance to different bile salt concentrations. L. paracasei lb12 showed a cell surface hydrophobicity of 38.18% and a 6.2 log CFU/ml resistance to simulated gastric and intestinal fluids, and a rate of auto- and co-aggregation of 15% and 22%, respectively. L. parasei lb12 showed also a moderate adhesion to HT-29 cell line. In conclusion, L. paracasei lb12 is considered a promising potential probiotic suitable for the development of food supplement and pharmaceutical products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The GenBank accession number for the 16S rRNA gene sequence and whole-genome sequence of strain OP286576.2. The data can be accessed by the corresponding author upon request.

Code Availability

Not applicable.

References

  1. Falguera V, Aliguer N, Falguera M (2012) An integrated approach to current trends in food consumption: moving toward functional and organic products? Food Control 26(2):274–281. https://doi.org/10.1016/j.foodcont.2012.01.051

    Article  Google Scholar 

  2. Shakibaie M, Mohammadi-Khorsand T, Adeli-Sardou M, Jafari M, Amirpour-Rostami S, Ameri A, Forootanfar H (2017) Probiotic and antioxidant properties of selenium-enriched Lactobacillus brevis LSe isolated from an Iranian traditional dairy product. J Trace Elem Med Biol 40:1–9. https://doi.org/10.1016/j.jtemb.2016.11.013

    Article  CAS  PubMed  Google Scholar 

  3. Sharifi Yazdi MK, Davoodabadi A, Khesht Zarin HR, Tajabadi Ebrahimi M, Soltan Dallal MM (2017) Characterisation and probiotic potential of LABisolated from Iranian traditional yogurts. Ital J Anim Sci 16(2):185–188. https://doi.org/10.1080/1828051X.2016.1222888

    Article  Google Scholar 

  4. Joudaki H, Mousavi M, Safari M, Razavi SH, Emam-Djomeh Z, Gharibzahedi SMT (2013) Scrutinizing the different pectin types on stability of an Iranian traditional drink “Doogh.” Int J Biol Macromol 60:375–382. https://doi.org/10.1016/j.ijbiomac.2013.06.034

    Article  CAS  Google Scholar 

  5. Sayevand HR, Bakhtiary F, Pointner A, Remely M, Hippe B, Hosseini H, Haslberger A (2018) Bacterial diversity in traditional doogh in comparison to industrial doogh. Curr Microbiol 75(4):386–393. https://doi.org/10.1007/s00284-017-1392-x

    Article  CAS  PubMed  Google Scholar 

  6. Goldin BR, Gorbach SL, Saxelin M, Barakat S, Gualtieri L, Salminen S (1992) Survival ofLactobacillus species (strain GG) in human gastrointestinal tract. Dig Dis Sci 37(1):121–128. https://doi.org/10.1007/BF01308354

    Article  CAS  PubMed  Google Scholar 

  7. Ouwehand AC, Salminen S, Isolauri E (2002) Probiotics: an overview of beneficial effects. Lactic Acid Bacteria. https://doi.org/10.1007/978-94-017-2029-8_18

    Article  Google Scholar 

  8. Pandey K, Naik S, Vakil B (2015) Probiotics, prebiotics and synbiotics-a review. J Food Sci Technol 52(12):7577–7587. https://doi.org/10.1007/s13197-015-1921-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Duhan J, Nehra K, Gahlawat S, Saharan P, Surekha D (2013) Bacteriocins from lactic acid bacteria. Biotechnology. https://doi.org/10.1007/978-81-322-1683-4_11

    Article  Google Scholar 

  10. Piri-Gharaghie T, Jegargoshe-Shirin N, Saremi-Nouri S, Khademhosseini SH, Hoseinnezhad-Lazarjani E, Mousavi A, et al (2022) Effects of Imipenem-containing Niosome nanoparticles against high prevalence methicillin-resistant Staphylococcus Epidermidis biofilm formed. Sci Rep 24;12(1):1–3

  11. Rogosa M, Hansen PA (1971) Nomenclatural considerations of certain species of Lactobacillus Beijerinck: request for an opinion. Int J Syst Evol Microbiol 21(2):177–186. https://doi.org/10.1099/00207713-21-2-177

    Article  Google Scholar 

  12. Martínez B, Rodríguez A, Suárez E (2016) Antimicrobial peptides produced by bacteria: the Bacteriocins. New weapons to control bacterial growth. Springer, New York, pp 15–38

    Book  Google Scholar 

  13. Cizeikiene D, Jagelaviciute J (2021) Investigation of antibacterial activity and probiotic properties of strains belonging to Lactobacillus and Bifidobacterium genera for their potential application in functional food and feed products. Probiotics Antimicrobial Proteins 13(5):1387–1403. https://doi.org/10.1007/s12602-021-09777-5

    Article  CAS  PubMed  Google Scholar 

  14. Zheng J, Wittouck S, Salvetti E, Franz CMAP, Harris HMB, Mattarelli P, O’Toole PW, Pot B, Vandamme P, Walter J, Watanabe K, Wuyts S, Felis GE, Gänzle MG, Lebeer S (2020) A taxonomic note on the genus Lactobacillus: description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int J Syst Evol Microbiol 70(4):2782–2858. https://doi.org/10.1099/ijsem.0.004107

    Article  CAS  PubMed  Google Scholar 

  15. Yu J, Wang W, Menghe B, Jiri M, Wang H, Liu W, Bao Q, Lu Q, Zhang J, Wang F (2011) Diversity of LABassociated with traditional fermented dairy products in Mongolia. J Dairy Sci 94(7):3229–3241. https://doi.org/10.3168/jds.2010-3727

    Article  CAS  PubMed  Google Scholar 

  16. Yu J, Wang H, Zha M, Qing Y, Bai N, Ren Y, Xi X, Liu W, Menghe B, Zhang H (2015) Molecular identification and quantification of LABin traditional fermented dairy foods of Russia. J Dairy Sci 98(8):5143–5154. https://doi.org/10.3168/jds.2015-9460

    Article  CAS  PubMed  Google Scholar 

  17. Sharafi H, Derakhshan V, Paknejad M, Alidoust L, Tohidi A, Pornour M, Hajfarajollah H, Zahiri HS, Noghabi KA (2015) Lactobacillus crustorum KH: novel prospective probiotic strain isolated from Iranian traditional dairy products. Appl Biochem Biotechnol 175(4):2178–2194. https://doi.org/10.1007/s12010-014-1404-2

    Article  CAS  PubMed  Google Scholar 

  18. Hajimohammadi Farimani R, Habibi Najafi MB, Fazly Bazzaz BS, Edalatian MR, Bahrami AR, Flórez AB, Mayo B (2016) Identification, typing and functional characterization of dominant LABstrains from Iranian traditional yoghurt. Eur Food Res Technol 242(4):517–526. https://doi.org/10.1007/s00217-015-2562-3

    Article  CAS  Google Scholar 

  19. De Man J, Rogosa D, Sharpe ME (1960) A medium for the cultivation of lactobacilli. J Appl Bacteriol 23(1):130–135. https://doi.org/10.1111/j.1365-2672.1960.tb00188.x

    Article  Google Scholar 

  20. Piri-Gharaghie T, Doosti A, Mirzaei SA (2022) Identification of antigenic properties of acinetobacter baumannii proteins as novel putative vaccine candidates using reverse vaccinology approach. Appl Biochem Biotechnol. https://doi.org/10.1007/s12010-022-03995-5

    Article  PubMed  Google Scholar 

  21. Carr FJ, Chill D, Maida N (2002) The lactic acid bacteria: a literature survey. Crit Rev Microbiol 28(4):281–370. https://doi.org/10.1080/1040-840291046759

    Article  CAS  PubMed  Google Scholar 

  22. Kwon HS, Yang EH, Yeon SW, Kang BH, Kim TY (2004) Rapid identification of probiotic Lactobacillus species by multiplex PCR using species-specific primers based on the region extending from 16S rRNA through 23S rRNA. FEMS Microbiol Lett 239(2):267–275. https://doi.org/10.1016/j.femsle.2004.08.049

    Article  CAS  PubMed  Google Scholar 

  23. Dubernet S, Desmasures N, Guéguen M (2002) A PCR-based method for identification of lactobacilli at the genus level. FEMS Microbiol Lett 214(2):271–275. https://doi.org/10.1111/j.1574-6968.2002.tb11358.x

    Article  CAS  PubMed  Google Scholar 

  24. Vinderola CG, Reinheimer JA (2003) Lactic acid starter and probiotic bacteria: a comparative “in vitro” study of probiotic characteristics and biological barrier resistance. Food Res Int 36(9–10):895–904. https://doi.org/10.1016/S0963-9969(03)00098-X

    Article  CAS  Google Scholar 

  25. Kumar A, Kumar D (2015) Characterization of Lactobacillus isolated from dairy samples for probiotic properties. Anaerobe 33:117–123. https://doi.org/10.1016/j.anaerobe.2015.03.004

    Article  CAS  PubMed  Google Scholar 

  26. Vasiee A, Alizadeh Behbahani B, Tabatabaei Yazdi F, Mortazavi SA, Noorbakhsh H (2018) Diversity and probiotic potential of LABisolated from horreh, a traditional Iranian fermented food. Probiot Antimicrob Proteins 10(2):258–268. https://doi.org/10.1007/s12602-017-9282-x

    Article  CAS  Google Scholar 

  27. Barzegar H, Alizadeh Behbahani B, Falah F (2021) Safety, probiotic properties, antimicrobial activity, and technological performance of Lactobacillus strains isolated from Iranian raw milk cheeses. Food Sci Nutr 9(8):4094–4107. https://doi.org/10.1002/fsn3.2365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Diana C-R, Humberto H-S, Jorge YF (2015) Probiotic properties of Leuconostoc mesenteroides isolated from aguamiel of Agave salmiana. Probiot Antimicrob Proteins 7(2):107–117. https://doi.org/10.1007/s12602-015-9187-5

    Article  CAS  Google Scholar 

  29. Topçu KC, Kaya M, Kaban G (2020) Probiotic properties of LABstrains isolated from pastırma. LWT 134:110216. https://doi.org/10.1016/j.lwt.2020.110216

    Article  CAS  Google Scholar 

  30. Jose NM, Bunt CR, McDowell A, Chiu JZ, Hussain MA (2017) A study of Lactobacillus isolates’ adherence to and influence on membrane integrity of human Caco-2 cells. J Dairy Sci 100(10):7891–7896. https://doi.org/10.3168/jds.2017-12912

    Article  CAS  PubMed  Google Scholar 

  31. Champiri ID, Bamzadeh Z, Rahimi E, Rouhi L (2021) Isolation and identification of Lactobacillus brevis from local cheese of bazoft and evaluation of antimicrobial activity against some pathogenic microorganisms. Iran J Med Microb.https://doi.org/10.30699/ijmm.16.1.17

  32. Prabhurajeshwar C, Chandrakanth K (2019) Evaluation of antimicrobial properties and their substances against pathogenic bacteria in-vitro by probiotic Lactobacilli strains isolated from commercial yoghurt. Clin Nutr Exp 23:97–115. https://doi.org/10.1016/j.yclnex.2018.10.001

    Article  Google Scholar 

  33. Pieniz S, Andreazza R, Anghinoni T, Camargo F, Brandelli A (2014) Probiotic potential, antimicrobial and antioxidant activities of Enterococcus durans strain LAB18s. Food Control 37:251–256. https://doi.org/10.1016/j.foodcont.2013.09.055

    Article  CAS  Google Scholar 

  34. Singh TP, Kaur G, Malik RK, Schillinger U, Guigas C, Kapila S (2012) Characterization of intestinal Lactobacillus reuteri strains as potential probiotics. Probiot Antimicrob Proteins 4(1):47–58. https://doi.org/10.1007/s12602-012-9090-2

    Article  CAS  Google Scholar 

  35. Afzali S, Edalatian Dovom MR, Habibi Najafi MB, Mazaheri Tehrani M (2020) Determination of the anti-yeast activity of Lactobacillus spp. isolated from traditional Iranian cheeses in vitro and in yogurt drink (Doogh). Sci Rep 10(1):1–11. https://doi.org/10.1038/s41598-020-63142-0

    Article  CAS  Google Scholar 

  36. Shemshad N, Nasiraie LR, Heravi RM (2021) Isolation of probiotic Lactobacilli bacteria from traditional naein dairy product (Koome). Iran J Med Microb 15(1):85–106

    Article  Google Scholar 

  37. Vos P, Garrity G, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer K-H, Whitman WB (2011) Bergey's manual of systematic bacteriology. The firmicutes, vol 3. Springer, New York

  38. Castagliuolo I, Galeazzi F, Ferrari S, Elli M, Brun P, Cavaggioni A, Tormen D, Sturniolo GC, Morelli L, Palù G (2005) Beneficial effect of auto-aggregating Lactobacillus crispatus on experimentally induced colitis in mice. FEMS Immunol Med Microbiol 43(2):197–204. https://doi.org/10.1016/j.femsim.2004.08.011

    Article  CAS  PubMed  Google Scholar 

  39. Keller MK, Hasslöf P, Stecksén-Blicks C, Twetman S (2011) Co-aggregation and growth inhibition of probiotic lactobacilli and clinical isolates of mutans streptococci: an in vitro study. Acta Odontol Scand 69(5):263–268. https://doi.org/10.3109/00016357.2011.554863

    Article  PubMed  Google Scholar 

  40. Jovanović JN, Nikolić B, Šeatović S, Zavišić G, Mitić-Ćulafić D, Vuković-Gačić B, Knežević-Vukčević J (2015) Characterization of some potentially probiotic Lactobacillus strains of human origin. Food Sci Biotechnol 24(5):1781–1788. https://doi.org/10.1007/s10068-015-0232-7

    Article  CAS  Google Scholar 

  41. Campana R, van Hemert S, Baffone W (2017) Strain-specific probiotic properties of LABand their interference with human intestinal pathogens invasion. Gut Pathogens 9(1):1–12. https://doi.org/10.1186/s13099-017-0162-4

    Article  Google Scholar 

  42. Śliżewska K, Chlebicz-Wójcik A, Nowak A (2021) Probiotic properties of new Lactobacillus strains intended to be used as feed additives for monogastric animals. Probiot Antimicrob Proteins 13(1):146–162. https://doi.org/10.1007/s12602-020-09674-3

    Article  CAS  Google Scholar 

  43. Sharma S, Kanwar SS (2017) Adherence potential of indigenous lactic acid bacterial isolates obtained from fermented foods of Western Himalayas to intestinal epithelial Caco-2 and HT-29 cell lines. J Food Sci Technol 54(11):3504–3511. https://doi.org/10.1007/s13197-017-2807-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tallon R, Bressollier P, Urdaci MC (2003) Isolation and characterization of two exopolysaccharides produced by Lactobacillus plantarum EP56. Res Microbiol 154(10):705–712. https://doi.org/10.1016/j.resmic.2003.09.006

    Article  CAS  PubMed  Google Scholar 

  45. Verdenelli MC, Ghelfi F, Silvi S, Orpianesi C, Cecchini C, Cresci A (2009) Probiotic properties of Lactobacillus rhamnosus and Lactobacillus paracasei isolated from human faeces. Eur J Nutr 48(6):355–363. https://doi.org/10.1007/s00394-009-0021-2

    Article  PubMed  Google Scholar 

  46. Plessas S, Kiousi DE, Rathosi M, Alexopoulos A, Kourkoutas Y, Mantzourani I, Galanis A, Bezirtzoglou E (2020) Isolation of a Lactobacillus paracasei strain with probiotic attributes from kefir grains. Biomedicines 8(12):594. https://doi.org/10.3390/biomedicines8120594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chee WJY, Chew SY, Than LTL (2020) Vaginal microbiota and the potential of Lactobacillus derivatives in maintaining vaginal health. Microb Cell Fact 19(1):1–24. https://doi.org/10.1186/s12934-020-01464-4

    Article  Google Scholar 

  48. Schillinger U (1989) Antibacterial activity of Lactobacillus sake isolated from meat. Appl Environ Microbiol 55(8):1901–1906. https://doi.org/10.1128/aem.55.8.1901-1906.1989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Danielsen M, Wind A (2003) Susceptibility of Lactobacillus spp. to antimicrobial agents. Int J Food Microbiol 82(1):1–11. https://doi.org/10.1016/S0168-1605(02)00254-4

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the staff members of Islamic Azad university of Shahrekord branch.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

IDC conducted the laboratory work and drafted this paper as a PhD. student. ER and LR co-supervised the research work and assisted in data interpretation and finalized the article write-up. ZB played the role of the principal supervisor and was responsible for manuscript preparation, data interpretation, and all other aspects of the work.

Corresponding author

Correspondence to Zahra Bamzadeh.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare that is relevant to the content of this article.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7952 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehghani Champiri, I., Bamzadeh, Z., Rahimi, E. et al. Lacticaseibacillus paracasei LB12, a Potential Probiotic Isolated from Traditional Iranian Fermented Milk (Doogh). Curr Microbiol 80, 333 (2023). https://doi.org/10.1007/s00284-023-03376-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03376-z

Navigation