Skip to main content

Advertisement

Log in

Synergy of Aspergillus niger and Components in Biofertilizer Composites Increases the Availability of Nutrients to Plants

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Intensive fertilization has been required to provide nutrients for plant growth under the current agricultural practices being applied to meet the global food demands. Micronutrients such as zinc, manganese, and copper are required in small quantities when compared to macronutrients (such as nitrogen, phosphorus and potassium), but they are essential for the plant growth cycle and consequently for increasing productivity. Mineral oxides such as ZnO, MnO, and CuO are used in agriculture as micronutrient sources, but their low solubility limits practical applications in plant nutrition. Similarly, elemental sulfur (S0) can provide a high-concentration source of sulfate, but its availability is limited by the ability of the soil to promote S0 oxidation. We propose here the integration of these nutrients in a composite based on a biodegradable starch matrix containing mineral oxides and S0 in a dispersion that allowed encapsulation of the acidifying agent Aspergillus niger, a native soil fungus. This strategy effectively improved the final nutrient solubility, with the composite starch/S0/oxidemixture multi-nutrient fertilizer showing remarkable results for solubilization of the oxides, hence confirming a synergic effect of S0 oxidation and microbial solubilization. This composite exhibited an extended shelf life and soil–plant experiments with Italian ryegrass (Lolium multiflorum Lam.) confirmed high efficiencies for dry matter production, nutrient uptake, and recovery. These findings can contribute to the development of environmentally friendly fertilizers towards a more sustainable agriculture and could open up new applications for formulations containing poorly soluble oxide sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

(c) and the sandy loam soil (d)

Fig. 5

Similar content being viewed by others

References

  1. Martinez-Ballesta MC, Dominguez-Perles R, Moreno DA, Muries B, Alcaraz-Lopez C, Bastias E et al (2010) Minerals in plant food: effect of agricultural practices and role in human health. A review. Agron Sustain Dev 30(2):295–309. https://doi.org/10.1051/agro/2009022

    Article  CAS  Google Scholar 

  2. Monreal CM, DeRosa M, Mallubhotla SC, Bindraban PS, Dimkpa C (2016) Nanotechnologies for increasing the crop use efficiency of fertilizer-micronutrients. Biol Fertil Soils 52(3):423–437. https://doi.org/10.1007/s00374-015-1073-5

    Article  CAS  Google Scholar 

  3. Dimkpa CO, Latta DE, McLean JE, Britt DW, Boyanov MI, Anderson AJ (2013) Fate of CuO and ZnO nano- and microparticles in the plant environment. Environ Sci Technol 47(9):4734–4742. https://doi.org/10.1021/es304736y

    Article  CAS  PubMed  Google Scholar 

  4. Heinonen S, Nikkanen JP, Huttunen-Saarivirta E, Levanen E (2017) Investigation of long-term chemical stability of structured ZnO films in aqueous solutions of varying conditions. Thin Solid Films 638:410–419. https://doi.org/10.1016/j.tsf.2017.07.055

    Article  CAS  Google Scholar 

  5. Mattiello EM, da Silva RC, Degryse F, Baird R, Gupta V, McLaughlin MJ (2017) Sulfur and zinc availability from co-granulated Zn-enriched elemental sulfur fertilizers. J Agri Food Chem 65(6):1108–1115. https://doi.org/10.1021/acs.jafc.6b04586

    Article  CAS  Google Scholar 

  6. Guimarães GGF, Klaic R, Giroto AS, Majaron VF, Avansi W, Farinas CS et al (2018) Smart fertilization based on sulfur-phosphate composites: synergy among materials in a structure with multiple fertilization roles. ACS Sustain Chem Eng 6(9):12187–12196. https://doi.org/10.1021/acssuschemeng.8b02511

    Article  CAS  Google Scholar 

  7. Degryse F, Ajiboye B, Baird R, da Silva RC, McLaughlin MJ (2016) Availability of fertiliser sulphate and elemental sulphur to canola in two consecutive crops. Plant Soil 398(1–2):313–325. https://doi.org/10.1007/s11104-015-2667-2

    Article  CAS  Google Scholar 

  8. Zhao CC, Gupta V, Degryse F, McLaughlin MJ (2017) Effects of pH and ionic strength on elemental sulphur oxidation in soil. Biol Fertil Soils 53(2):247–256. https://doi.org/10.1007/s00374-016-1170-0

    Article  CAS  Google Scholar 

  9. Pampulha ME, Oliveira A (2006) Impact of an herbicide combination of bromoxynil and prosulfuron on soil microorganisms. Curr Microbiol 53(3):238–243. https://doi.org/10.1007/s00284-006-0116-4

    Article  CAS  PubMed  Google Scholar 

  10. Klaic R, Plotegher F, Ribeiro C, Zangirolami TC, Farinas CS (2017) A novel combined mechanical-biological approach to improve rock phosphate solubilization. Int J Miner Process 161:50–58. https://doi.org/10.1016/j.minpro.2017.02.009

    Article  CAS  Google Scholar 

  11. Mendes GdO, Muniz Rego, da Silva NM, Anastacio TC, Bojkov Vassilev N, Ribeiro JI Jr, da Silva IR et al (2015) Optimization of Aspergillus niger rock phosphate solubilization in solid-state fermentation and use of the resulting product as a P fertilizer. Microb Biotechnol 8(6):930–9. https://doi.org/10.1111/1751-7915.12289

    Article  CAS  PubMed Central  Google Scholar 

  12. Grayston SJ, Nevell W, Wainwright M (1986) Sulphur oxidation by fungi. Trans Br Mycol Soc 87(2):193–198. https://doi.org/10.1016/S0007-1536(86)80020-1

    Article  CAS  Google Scholar 

  13. Majaron VF, da Silva MG, Bortoletto-Santos R, Klaic R, Giroto A, Guimaraes GGF et al (2020) Synergy between castor oil polyurethane/starch polymer coating and local acidification by A. niger for increasing the efficiency of nitrogen fertilization using urea granules. Ind Crops Prod 154:8. https://doi.org/10.1016/j.indcrop.2020.112717

    Article  CAS  Google Scholar 

  14. Klaic R, Giroto AS, Guimarães GGF, Plotegher F, Ribeiro C, Zangirolami TC et al (2018) Nanocomposite of starch-phosphate rock bioactivated for environmentally-friendly fertilization. Miner Eng 128:230–237. https://doi.org/10.1016/j.mineng.2018.09.002

    Article  CAS  Google Scholar 

  15. Giroto AS, de Campos A, Pereira EI, Cruz CCT, Marconcini JM, Ribeiro C (2014) Study of a nanocomposite starch-clay for slow-release of herbicides: Evidence of synergistic effects between the biodegradable matrix and exfoliated clay on herbicide release control. J Appl Polym Sci. https://doi.org/10.1002/app.41188

    Article  Google Scholar 

  16. Camargo OA, Moniz AC, Jorge JA, Valadares JMAS (2009) Métodos de Análise Química, Mineralógica e Física de Solos do Instituto Agronômico de Campinas. Instituto Agronômico, Campinas

    Google Scholar 

  17. van Raij B, Andrade JC, Cantarella H, Quaggio JA (2001) Chemical analysis to assess the fertility of tropical soils. Instituto Agronômico, Campinas

    Google Scholar 

  18. Vanraij B, Quaggio JA, Dasilva NM (1986) Extraction of phosphorus, potassium, calcium, and magnesium from soils by an ion-exchange resin procedure. Commun Soil Sci Plant Anal 17(5):547–566. https://doi.org/10.1080/00103628609367733

    Article  CAS  Google Scholar 

  19. Cantarella H, Furlani PR (1997) Arroz de sequeiro. Instituto Agronômico, Campinas

    Google Scholar 

  20. Novais RF, Neves JCL, Barros NF (1991) Ensaio Em Ambiente Controlado. In: Oliveira AJ, Garrido WE, Araújo JD, Lourenço S (eds) Métodos de pesquisa em fertilidade do solo, 1st edn. Embrapa-SEA, Brasília, pp 189–253

    Google Scholar 

  21. Miyazawa M, Pavan MA, Muraoka T, Carmo CAFSd, Melo WJ (2009) Análise química de tecido vegetal. In: Silva FCd (ed) Manual de análises químicas de solos plantas e fertilizantes. Embrapa Informação Tecnológica, Brasília, pp 191–234

    Google Scholar 

  22. Araujo IMS, Silva RR, Pacheco G, Lustri WR, Tercjak A, Gutierrez J et al (2018) Hydrothermal synthesis of bacterial cellulose-copper oxide nanocomposites and evaluation of their antimicrobial activity. Carbohyd Polym 179:341–349. https://doi.org/10.1016/j.carbpol.2017.09.081

    Article  CAS  Google Scholar 

  23. Mayorga JLC, Rovira MJF, Mas LC, Moragas GS, Cabello JML (2018) Antimicrobial nanocomposites and electrospun coatings based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and copper oxide nanoparticles for active packaging and coating applications. J Appl Polym Sci 135(2):11. https://doi.org/10.1002/app.45673

    Article  CAS  Google Scholar 

  24. Michael G, Bahri-Esfahani J, Li QW, Rhee YJ, Wei Z, Fomina M et al (2014) Oxalate production by fungi: significance in geomycology, biodeterioration and bioremediation. Fungal Biol Rev 28(2–3):36–55. https://doi.org/10.1016/j.fbr.2014.05.001

    Article  Google Scholar 

  25. Lau BLT, Hsu-Kim H (2008) Precipitation and growth of zinc sulfide nanoparticles in the presence of thiol-containing natural organic ligands. Environ Sci Technol 42(19):7236–7241. https://doi.org/10.1021/es801360b

    Article  CAS  PubMed  Google Scholar 

  26. Nie ZR, Ma LW, Xi XL (2014) “Complexation-precipitation” metal separation method system and its application in secondary resources. Rare Met 33(4):369–378. https://doi.org/10.1007/s12598-014-0352-x

    Article  CAS  Google Scholar 

  27. Chaerun SK, Sulistyo RS, Minwal WP, Mubarok MZ (2017) Indirect bioleaching of low-grade nickel limonite and saprolite ores using fungal metabolic organic acids generated by Aspergillus niger. Hydrometallurgy 174:29–37. https://doi.org/10.1016/j.hydromet.2017.08.006

    Article  CAS  Google Scholar 

  28. Bahaloo-Horeh N, Mousavi SM (2017) Enhanced recovery of valuable metals from spent lithium-ion batteries through optimization of organic acids produced by Aspergillus niger. Waste Manag 60:666–679. https://doi.org/10.1016/j.wasman.2016.10.034

    Article  CAS  PubMed  Google Scholar 

  29. Rasoulnia P, Mousavi SM (2016) Maximization of organic acids production by Aspergillus niger in a bubble column bioreactor for V and Ni recovery enhancement from power plant residual ash in spent-medium bioleaching experiments. Biores Technol 216:729–736. https://doi.org/10.1016/j.biortech.2016.05.114

    Article  CAS  Google Scholar 

  30. Nagaraju Y, Gundappagol RC, Mahadevaswamy (2020) Mining saline soils to manifest plant stress-alleviating halophilic bacteria. Curr Microbiol. https://doi.org/10.1007/s00284-020-02028-w

    Article  PubMed  Google Scholar 

  31. Bosecker K (1997) Bioleaching: metal solubilization by microorganisms. FEMS Microbiol Rev 20(3–4):591–604. https://doi.org/10.1111/j.1574-6976.1997.tb00340.x

    Article  CAS  Google Scholar 

  32. Mohanty S, Ghosh S, Nayak S, Das AP (2017) Bioleaching of manganese by Aspergillus sp. isolated from mining deposits. Chemosphere 172:302–309. https://doi.org/10.1016/j.chemosphere.2016.12.136

    Article  CAS  PubMed  Google Scholar 

  33. Calle-Castaneda SM, Marquez-Godoy MA, Hernandez-Ortiz JP (2018) Phosphorus recovery from high concentrations of low-grade phosphate rocks using the biogenic acid produced by the acidophilic bacteria Acidithiobacillus thiooxidans. Miner Eng 115:97–105. https://doi.org/10.1016/j.mineng.2017.10.014

    Article  CAS  Google Scholar 

  34. He H, Zhang CG, Xia JL, Peng AA, Yang Y, Jiang HC et al (2009) Investigation of Elemental Sulfur Speciation Transformation Mediated by Acidithiobacillus ferrooxidans. Curr Microbiol 58(4):300–307. https://doi.org/10.1007/s00284-008-9330-6

    Article  CAS  PubMed  Google Scholar 

  35. Kaminsky LM, Trexler RV, Malik RJ, Hockett KL, Bell TH (2019) The inherent conflicts in developing soil microbial inoculants. Trends Biotechnol 37(2):140–151. https://doi.org/10.1016/j.tibtech.2018.11.011

    Article  CAS  PubMed  Google Scholar 

  36. Vassilev N, Vassileva M, Martos V, del Moral LGF, Kowalska J, Tylkowski B et al (2020) Formulation of microbial inoculants by encapsulation in natural polysaccharides: focus on beneficial properties of carrier additives and derivatives. Front Plant Sci 11:9. https://doi.org/10.3389/fpls.2020.00270

    Article  Google Scholar 

  37. Germida JJ, Janzen HH (1993) Factors affecting the oxidation of elemental sulfur in soils. Fert Res 35(1–2):101–114. https://doi.org/10.1007/bf00750224

    Article  CAS  Google Scholar 

  38. Santos MS, Nogueira MA, Hungria M (2019) Microbial inoculants: reviewing the past, discussing the present and previewing an outstanding future for the use of beneficial bacteria in agriculture. AMB Express 9(1):22. https://doi.org/10.1186/s13568-019-0932-0

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by FAPESP (São Paulo State Research Foundation, grants #2013/11821-5, #2016/09343-6, and #2016/10636-8), CNPq (Brazilian National Council for Scientific and Technological Development, grant #2014/142348-7), and CAPES (Coordination for the Improvement of Higher Education Personnel, Finance Code 001). The authors thank the Agronano Network (Embrapa Research Network), the Agroenergy Laboratory, and the National Nanotechnology Laboratory for Agribusiness (LNNA) for providing institutional support and facilities. Caue Ribeiro is also grateful to CAPES / Alexander von Humboldt Foundation for Experienced Research Fellowship (CAPES Finance Code 001; CAPES Process 88881.145566/2017-1) and Return Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

RK, ACCB, TCZ, CR, and CSF contributed to the study conception and design. Material preparation and data collection were performed by RK, GGFG, and ASG. All authors contributed to data analysis. The first draft of the manuscript was written by RK and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Cristiane S. Farinas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 2085 kB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klaic, R., Guimarães, G.G.F., Giroto, A.S. et al. Synergy of Aspergillus niger and Components in Biofertilizer Composites Increases the Availability of Nutrients to Plants. Curr Microbiol 78, 1529–1542 (2021). https://doi.org/10.1007/s00284-021-02406-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-021-02406-y

Navigation