Skip to main content
Log in

Factors affecting the oxidation of elemental sulfur in soils

  • Published:
Fertilizer research Aims and scope Submit manuscript

Abstract

The use of elemental sulfur (S0) to alleviate widespread S deficiencies in agricultural soils is limited by the unpredictability of its oxidation to plant available sulfate. Here we review the biological, fertilizer and soil-related factors that control S0 oxidation. Sulfur oxidation in soil is mediated primarily by microorganisms, and thus it is the size, composition and activity of the microbial community which dictate oxidation rates. Because S0 oxidation is a biological process, it is strongly influenced by factors directly affecting microbial activity including soil temperature, water potential, and aeration. In many soils these factors represent the primary constraints to S0 oxidation. Oxidation is also influenced by the effective surface area of the S exposed to microbial activity. Thus oxidation is favored by reducing the particle size and abundant populations of heterotrophic bacteria and fungi capable of oxidizing S0, thus the availability of organic substrates from residue additions or root exudates may also affect S oxidation. Previous application of S0 may increase oxidation rates in many soils, presumably by stimulating S0 oxidizing populations. The large number of factors that govern S0 oxidation account for the variability in oxidation rates among soils, climatic regions, and agronomic practices. Many of these factors are subject to agronomic control, however, and it should be possible to devise S fertilizer strategies that exploit the slow release characteristics of S0 to meet crop demands efficiently in a variety of conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adamcyzk-Winiarska Z, Krol M and Kobus J (1975) Microbial oxidation of elemental sulphur in brown soil. Plant and Soil 43: 95–100

    Google Scholar 

  2. Aleem MIH (1975) Biochemical reaction mechanisms in sulfur oxidation by chemosynthetic bacteria. Plant and Soil 43: 587–607

    CAS  Google Scholar 

  3. Attoe OJ and Olson RA (1966) Factors affecting rate of oxidation in soils of elemental sulfur and that added in rock phosphate-sulfur fusions. Soil Sci. 101: 317–325

    CAS  Google Scholar 

  4. Baldensperger J (1976) Use of respirometry to evaluate sulphur oxidation in soils. Soil Biol. Biochem. 8: 423–427

    Article  CAS  Google Scholar 

  5. Barrow NJ (1971) Slowly available sulphur fertilizers in south-western Australia. 1. Elemental sulphur. Austr. J. Exp. Agric. Anim. Husb. 11: 211–216

    CAS  Google Scholar 

  6. Beaton JD, Fox RL and Jones MB (1985) Production, marketing, and use of sulfur products. Pages 411–453 In: Fertilizer technology and use (3rd. ed.), Madison, WISC.: Soil Sci. Soc. Am.

    Google Scholar 

  7. Bettany JR and Stewart JWB (1983) Sulphur cycling in soils. Pages 767–785 In: More AI (ed) Proceedings of the International Sulphur 1982 conference, Vol. II. The British Sulphur Corp. Ltd., London

    Google Scholar 

  8. Bettany JR, Stewart JWB and Halstead EH (1973) Sulfur fractions and carbon, nitrogen and sulfur relationships in grassland, forest and associated transitional soils. Soil Sci. Soc. Am. Proc. 37: 915–918

    CAS  Google Scholar 

  9. Biederbeck VO (1978) Soil organic sulfur and fertility. Pages 273–310 In: Schnitzer M and Khan SU (ed) Soil organic matter, Elsevier Scientific Publ. Co., New York

    Google Scholar 

  10. Bloomfield C (1967) Effect of some phosphate fertilizers on the oxidation of elemental sulfur in soil. Soil Sci. 103: 219–223

    CAS  Google Scholar 

  11. Bollen WB (1977) Sulfur oxidation and respiration in 54-year-old soil samples. Soil Biol. Biochem. 9: 405–410

    Article  CAS  Google Scholar 

  12. Boswell CC, Owers WR, Swanney B and Rothbaum HP (1988) Sulfur/sodium bentonite prills as sulfur fertilizers. 1. The effects of S/Na-bentonite ratios on the rate of dispersion and particle size distribution of elemental sulfur dispersed from laboratory-produced prills. Fert. Res. 15: 13–31

    CAS  Google Scholar 

  13. Boswell CC, Swanney B and Owers WR (1988) Sulfur/sodium bentonite prills as sulfur fertilizers. 2. Effect of sulfur-sodium bentonite ratios on the availability of sulfur to pasture plants in the field. Fert. Res. 15: 33–46

    CAS  Google Scholar 

  14. Burns GR (1967) Oxidation of sulphur in soils. Tech. Bull. No. 13. The Sulphur Institute, Washington. Page 41

    Google Scholar 

  15. Chapman SJ (1990) Thiobacillus populations in some agricultural soils. Soil Biol. Biochem. 22: 479–482

    Article  Google Scholar 

  16. Chapman SJ (1989) Oxidation of micronized elemental sulphur in soil. Plant and Soil 116: 69–76

    Article  CAS  Google Scholar 

  17. Chien SH, Friesen DK and Hamilton BW (1988) Effect of application method on availability of elemental sulfur in cropping sequences. Soil Sci. Soc. Amer. J. 52: 165–169

    CAS  Google Scholar 

  18. Deng S and Dick RP (1990) Sulfur oxidation and rhodanese activity in soils. Soil Sci. 150: 552–560

    CAS  Google Scholar 

  19. Flierman C B and Brock TD (1972) Ecology of sulphuroxidizing bacteria in hot acid soils. J. Bacteriol. 111: 343–350

    Google Scholar 

  20. Fox RL, Atesalp HM, Kampbell DH and Rhoades HF (1964) Factors influencing the availability of sulfur fertilizers to alfalfa and corn. Soil Sci. Soc. Amer. Proc. 28: 406–408

    CAS  Google Scholar 

  21. Freney JR and Williams CH (1983) The sulfur cycle in soil. Chapter 3 Pages 129–201 In: Ivanov MV and Freney JR (ed) The global biogeochemical sulfur cycle, SCOPE 19. John Wiley and Sons, New York

    Google Scholar 

  22. Germida JJ (1985) Modified sulfur-containing media for studying sulfur-oxidizing microorganisms. Pages 333–344 In: Caldwell DE, Brierley JA and Brierley CL (ed) Planetary ecology, Van Nostrand Reinhold, New York

    Google Scholar 

  23. Germida JJ, Lawrence JR and Gupta VVSR (1984) Microbial oxidation of sulphur in Saskatchewan soils. Pages 703–710 In: Terry JW (ed) Proceedings of the sulphur 84 conference. Sulphur Development Institute of Canada, Calgary

    Google Scholar 

  24. Germida JJ, Wainwright M and Gupta VVSR (1991) Biochemistry of sulfur cycling in soil In: Stotzky G and Bollag J-M (eds) Soil Biochemistry vol. 7 Pages 1–53. New York: Marcel Dekker, Inc

    Google Scholar 

  25. Grayston SJ and Germida JJ (1990) Influence of crop rhizospheres on populations and activity of heterotrophic sulfur-oxidizing microorganisms. Soil Biol. Biochem. 22: 457–463

    Article  CAS  Google Scholar 

  26. Grayston SJ, and Wainwright M (1988) Sulphur oxidation by soil fungi including species of mycorrhizae and wood-rotting Basidiomycetes. FEMS Microbiol. Ecol. 53: 1–8

    CAS  Google Scholar 

  27. Grayston SJ, Nevell W and Wainwright M (1986) Sulphur oxidation by fungi. Trans. Brit. Mycol. Soc. 87: 193–198

    CAS  Google Scholar 

  28. Guittonneau G and Keilling J (1932) L'evolution et la solubilisation du soufre elementaire dans la terre arable. Ann. Agron. 2: 690–725

    CAS  Google Scholar 

  29. Halstead RL and Rennie PJ (1977) The effects of sulfur on soils in Canada. Pages 181-220 In: Cooke NE (ed) Sulfur and its inorganic derivatives in the Canadian Environment. Nat. Res. Counc. Can., Publ. No. NRCC 15015. Ottawa, Canada

  30. Janzen HH (1990) Elemental sulfur oxidation as influenced by plant growth and degree of dispersion within soil. Can. J. Soil Sci. 70: 499–502

    CAS  Google Scholar 

  31. Janzen HH and Bettany JR (1986) Release of available sulfur from fertilizers. Can. J. Soil Sci. 66: 91–103

    CAS  Google Scholar 

  32. Janzen HH and Bettany JR (1987) Oxidation of elemental sulfur under field conditions in central Saskatchewan. Can. J. Soil Sci. 67: 609–618

    CAS  Google Scholar 

  33. Janzen HH and Bettany JR (1987) Measurement of sulfur oxidation in soils. Soil Sci. 143: 444–452

    CAS  Google Scholar 

  34. Janzen HH and Bettany JR (1987) The effect of temperature and water potential on sulfur oxidation in soils. Soil Sci. 144: 81–89

    CAS  Google Scholar 

  35. Janzen HH and Karamanos RE (1991) Short-term and residual contribution of selected elemental S fertilizers to the S fertility of two Luvisolic soils. Can. J. Soil Sci. 71: 203–211

    CAS  Google Scholar 

  36. Janzen HH, Bettany JR and Stewart JWB (1982) Sulfur oxidation and fertilizer sources. Pages 229-240 In: Proceedings of the Alberta Soil Science Workshop, Edmonton, Alberta

  37. Jones LS, Anderson OE and Dowler C (1974) Effects of herbicides in a crop-herbicide rotation on sulfur oxidation in Tifton soil. Agron. J. 66: 744–747

    CAS  Google Scholar 

  38. Jones MB and Ruckman (1969) Effect of particle size on long-term availability of sulfur on annual-type grasslands. Agron. J. 61: 936–939

    Google Scholar 

  39. Karamanos RE and Janzen HH (1991) Crop response to elemental sulfur fertilizers in central Alberta. Can. J. Soil Sci. 71: 213–225

    CAS  Google Scholar 

  40. Keller P (1969) The effect of sodium chloride and sulphate on sulphur oxidation in soil. Plant and Soil 30: 15–22

    Article  CAS  Google Scholar 

  41. Kelly DP (1985) Physiology of the thiobacilli: elucidating the sulphur oxidation pathway. Microbiol. Sci. 2: 105–109

    CAS  Google Scholar 

  42. Killham K, Lindely ND and Wainwright M (1981) Inorganic sulfur oxidation byAureobasidum pullulans. Appl. Environ. Microbiol. 42: 629–631

    CAS  Google Scholar 

  43. Krol M (1983) Occurrence in soils and activity of sulphur oxidizing micro-organisms. Pameitnik Pulawski Prace Iung Zeszyt. 79: 45–62

    CAS  Google Scholar 

  44. Kuenen JG and Beudeker RF (1982) Microbiology of thiobacilli and other sulphur-oxidising autotrophs, mixotrophs and heterotrophs. Phil. Trans. Royal Soc. Lond. Ser. B. 298: 473–497

    CAS  Google Scholar 

  45. Kurek E (1983) An enzymatic complex active in sulphite and thiosulphate oxidation byRhodotorula sp. Arch. Microbiol. 134: 143–147

    Article  CAS  Google Scholar 

  46. Laishley EJ, Bryant RD, Kobryn BW and Hyne JB (1984) The effect of particle size and molecular composition of elemental sulphur on ease of microbiological oxidation. Alberta Sulphur Research Ltd., Quarterly Bull., Vol. 20, Pages 33-50

  47. Lawrence JR and Germida JJ (1988) Most probable number procedure to enumerate S0-oxidizing, thiosulfate producing heterotrophs in soil. Soil Biol. Biochem. 20: 577–578

    Article  Google Scholar 

  48. Lawrence JR and Germida JJ (1988) Relationship between microbial biomass and elemental sulfur oxidation in agricultural soils. Soil Sci. Soc. Amer. J. 52: 672–677

    CAS  Google Scholar 

  49. Lawrence JR and Germida JJ (1991) Enumeration of sulfur-oxidizing populations in Saskatchewan agricultural soils. Can. J. Soil Sci. 71: 127–136

    CAS  Google Scholar 

  50. Lawrence JR and Germida JJ (1991) Microbial and chemical characteristics of elemental sulfur beads in agricultural soils. Soil Biol. Biochem. 23: 617–622

    CAS  Google Scholar 

  51. Lawrence JR, Gupta VVSR and Germida JJ (1988) Impact of elemental sulfur fertilization on agricultural soils. II. Effects on sulfur oxidizing populations and oxidation rates. Can. J. Soil Sci. 68: 475–483

    CAS  Google Scholar 

  52. Lee A, Watkinson JH, Orbell G, Bagyaraj J and Lauren DR (1987) Factors influencing dissolution of phosphate rock and oxidation of elemental sulphur in some New Zealand soils. New Zealand J. Agric. Res. 30: 373–385

    CAS  Google Scholar 

  53. Lee A, Boswell CC and Watkinson JH (1988) Effect of particle size on the oxidation of elemental sulphur, thiobacilli numbers, soil sulphate and its availability to pasture. New Zealand J. Agric. Res. 31: 179–186

    CAS  Google Scholar 

  54. Lettl A (1981) The effect of emissions on the microbiology of the sulphur cycle. Comm. Inst. Forest. Cechosloveniae. 12: 27–50

    Google Scholar 

  55. Lettl A (1984) Soil heterotrophic bacteria in transformations of inorganic sulphur. Folia Microbiol. 29: 131–137

    CAS  Google Scholar 

  56. Lettl A, Langkramer O and Lochman V (1981) Dynamics of oxidation of inorganic sulphur compounds in upper soil horizons of spruce forest soils. Folia Microbiol. 26: 24–28

    CAS  Google Scholar 

  57. Lettl A, Langkramer O, Lochman V and Jaks M (1981) Thiobacilli and sulphate production from inorganic sulphur compounds in upper horizons of some spruce forest soils. Folia Microbiol. 26: 29–36

    CAS  Google Scholar 

  58. Lettl A, Langkramer O and Lochman V (1981) Some factors influencing production of sulphate by oxidation of elemental sulphur and thiosulphate in upper horizons of spruce forest soils. Folia Microbiol. 26: 158–163

    CAS  Google Scholar 

  59. Li P and Caldwell AC (1966) The oxidation of elemental sulfur in soil. Soil Sci. Soc. Amer. Proc. 30: 370–372

    CAS  Google Scholar 

  60. Lindemann WC, Aburto JJ, Haffner WM and Bono AA (1991) Effect of sulfur source on sulfur oxidation. Soil Sci. Soc. Amer. J. 55: 85–90

    CAS  Google Scholar 

  61. Maynard DG, Germida JJ and Addison PA (1986) The effect of elemental sulfur on certain chemical and biological propertites of surface organic horizons of a forest soil. Can. J. Forest. Res. 16: 1050–1054

    CAS  Google Scholar 

  62. McCaskill MR and Blair GJ (1987) Particle size and soil texture effects in elemental sulfur oxidation. Agron. J. 79: 1079–1083

    CAS  Google Scholar 

  63. McCready RGL and Krouse HR (1982) Sulfur isotope fractionation during the oxidation of elemental sulfur by thiobacilli in a solonetzic soil. Can. J. Soil Sci. 62: 105–110

    CAS  Google Scholar 

  64. McIntire WH, Gray FJ and Shaw WM (1921) The nonbiological oxidation of elemental sulphur in quartz medium. Soil Sci. 11: 249–254

    Google Scholar 

  65. Meyer B (1964) Solid allotropes of sulfur. Chemical Reviews 64: 429–451

    Article  CAS  Google Scholar 

  66. Meyer B (1976) Elemental sulfur. Chemical Reviews 76: 367–388

    Article  CAS  Google Scholar 

  67. Moser US and Olson RV (1953) Sulfur oxidation in four soils as influenced by soil moisture retention and sulfur bacteria. Soil Sci. 76: 251–257

    CAS  Google Scholar 

  68. Nevell W and Wainwright M (1987) Influence of soil moisture on sulphur oxidation in brown earth soils exposed to atmospheric pollution. Biol. Fertil Soils 5: 209–214

    Article  CAS  Google Scholar 

  69. Nor YM and Tabatabai MA (1977) Oxidation of elemental sulfur in soils. Soil Sci. Soc. Am. J. 41: 736–741

    CAS  Google Scholar 

  70. Pepper IL and Miller RH (1978) Comparison of the oxidation of thiosulfate and elemental sulfur by two heterotrophic bacteria andThiobacillus thiooxidans. Soil Sci. 126: 9–14

    CAS  Google Scholar 

  71. Pivavarova TA, Miller YM, Krasheninnikova SA, Kapustin OA and Karavaiko CI (1982) Role of phospholipids in the fractionation of stable isotopes of sulfur in its oxidation byThiobacillus ferrooxidans. Mikrobiologiya 51: 552–556 [English translation, Plenum Publishing Company, 1983]

    Google Scholar 

  72. Rehm GW and Caldwell AC (1969) Relationship of soil texture to sulfur oxidation. Agron. J. 61: 333–334

    Google Scholar 

  73. Rupela OP and Tauro P (1973) Isolation and characterization ofThiobacillus from alkali soils. Soil Biol. Biochem. 5: 891–897

    CAS  Google Scholar 

  74. Rupela OP and Tauro P (1973) Utilization ofThiobacillus to reclaim alkali soils. Soil Biol. Biochem. 5: 899–901

    CAS  Google Scholar 

  75. Skiba U and Wainwright M (1984) Oxidation of elemental-S in coastal-dune sands and soils. Plant and Soil 77: 87–95

    Article  CAS  Google Scholar 

  76. Solberg ED, Nyborg M and Laverty D (1986) Banding versus incorporation of elemental sulphur fertilizer. Pages 81-86 In: Proc. 29th Ann. Manitoba Soc. Soil Sci. Meetings. Winnipeg, Manitoba

  77. Solberg ED, Nyborg M and Laverty D (1987) Effects of rainfall, wet-dry, and freeze-thaw cycles on the oxidation of elemental sulphur fertilizers. Pages 120-126 In: Proc. 24th Annual Alberta Soil Science Workshop, Calgary, Alberta

  78. Starkey RL (1966) Oxidation and reduction of sulfur compounds in soils. Soil Sci. 101: 297–306

    CAS  Google Scholar 

  79. Swaby RJ and Fedel R (1973) Microbial production of sulphate and sulphide in some Australian soils. Soil Biol. Biochem. 5: 773–781

    Article  CAS  Google Scholar 

  80. Swan M, Soper RJ and Morden G (1986) The effect of elemental sulfur, gypsum and ammonium thiosulfate as sulfur sources on yield of rapeseed. Comm. Soil Sci. Plant Anal. 17: 1383–1390

    CAS  Google Scholar 

  81. Tisdale SL, Reneau RB Jr. and Platou. JS (1982) Atlas of sulfur deficiencies. Pages 295–322 In: Tabatabai MA (ed.), Sulfur in agriculture. American Society of Agronomy, Wisconsin

    Google Scholar 

  82. Vishniac WV and Santer M (1957) The Thiobacilli. Bact. Rev. 21: 195–213

    CAS  Google Scholar 

  83. Vitolins MI and Swaby RJ (1969) Activity of sulphuroxidizing microorganisms in some Australian soils. Aust. J. Soil Res. 7: 171–183

    Article  CAS  Google Scholar 

  84. Wainwright M (1978) Microbial sulphur oxidation in soil. Sci. Prog., Oxf. 65: 459–475

    CAS  Google Scholar 

  85. Wainwright M (1978) Sulphur oxidising micro-organisms on vegetation and in soils exposed to atmospheric pollution. Environ. Pollut. 17: 167–174

    CAS  Google Scholar 

  86. Wainwright M (1979) Effects of pesticides and N-serve on the oxidation of elemental S in soil. Plant and Soil 51: 205–213

    Article  CAS  Google Scholar 

  87. Wainwright M (1984) Sulfur oxidation in soils. Adv. Agron. 37: 349–396

    CAS  Google Scholar 

  88. Wainwright M (1988) Inorganic sulphur oxidation by fungi. Pages 71–89 In: Body L, Marchant R and Read DJ (ed) Nitrogen phosphorus and sulphur utilization by fungi. Cambridge University Press, Cambridge

    Google Scholar 

  89. Wainwright M and Grayston SJ (1989) Accumulation and oxidation of metal sulphides by fungi. Pages 119–130 In: Poole, R. K., and G. M. Gadd. Metal-Microbe interactions, Special Publ. of The Soc. Gen. Microbiol. Vol. 26. IRL Press, New York

    Google Scholar 

  90. Wainwright M and Killham K (1980) Sulphur oxidation byFusarium solani. Soil Biol. Biochem. 12: 555–558

    CAS  Google Scholar 

  91. Wainwright M and Killham K (1982) Microbial transformation of some particulate pollution deposits in soil -a source of plant-available nitrogen and sulphur. Plant and Soil 65: 297–301

    CAS  Google Scholar 

  92. Wainwright M, Nevell W and Grayston SJ (1986) Effects of organic matter on sulphur oxidation in soil and influence of sulphur oxidation on soil nitrification. Plant and Soil 96: 369–376

    CAS  Google Scholar 

  93. Wainwright M, Skiba U and Betts RP (1984) Sulphur oxidation by aStreptomyces sp. growing in a carbon deficient medium and autoclaved soil. Arch. Microbiol. 139: 272–276

    Article  CAS  Google Scholar 

  94. Watkinson JH (1989) Measurement of the oxidation rate of elemental sulfur in soil. Austr. J. Soil Res. 27: 365–375

    CAS  Google Scholar 

  95. Watkinson JH, Lee A and Lauren DR (1987) Measurement of elemental sulfur in soil and sediments: Field sampling, sample storage, pretreatment, extraction and analysis by high-performance Liquid Chromatography. Austr. J. Soil Res. 25: 167–178

    CAS  Google Scholar 

  96. Weir RG (1975) The oxidation of elemental suphur and sulphides in soil. Pages 40–49 In: McLachlan KD (ed) Sulphur in Australian Agriculture. Sydney Univ. Press, Sydney, Australia

    Google Scholar 

  97. Wood AP and Kelly DP (1985) Physiological characteristics of a new thermophilic, obligately chemolithotrophic Thiobacillus species,Thiobacillus tepidarius sp., nov. Int. J. Syst. Bacteriol. 35: 91–94

    Google Scholar 

  98. Yagi S, Kitai S and Kimura T (1971) Oxidation of elemental sulfur to thiosulfate byStreptomyces. Appl. Microbiol. 22: 157–159

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Germida, J.J., Janzen, H.H. Factors affecting the oxidation of elemental sulfur in soils. Fertilizer Research 35, 101–114 (1993). https://doi.org/10.1007/BF00750224

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00750224

Key words

Navigation