Skip to main content
Log in

Identification and Characterization of the Small Heat Shock Protein Hsp20 from Oenococcus oeni SD-2a

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Oenococcus oeni can exert its function in hostile wine conditions during the malolactic fermentation process. Therefore, it is an important microbial resource for exploring resistance genes. Hsp20 is an important small heat shock protein from O. oeni. The conserved consensus motif “A-x-x-x-x-G-x-L” of Hsp20 announced its role as a member of the small heat shock protein family. The hsp20 gene from O. oeni SD-2a was cloned to create the recombinant plasmid pTriEx-Hsp20. The recombinant plasmid was transformed into Escherichia coli BL21(DE3) competent cells, and the Hsp20 protein was induced by isopropyl-β-d-thiogalactoside (IPTG). The hsp20 gene from O. oeni SD-2a was successfully expressed, and a 20-kDa fusion protein was identified by SDS-PAGE. The purified Hsp20 protein was obtained using Ni-affinity chromatography. Additionally, BL21(DE3)/Hsp20 and BL21(DE3)/Ctrl were treated at high temperatures of 42 and 52 °C, at pH values of 2.0–12.0, under oxidative shock with 0.1% (v/v) and 0.2% (v/v) H2O2, and under an osmotic shock of 430 and 860 mM NaCl to compare the effects of heterologous expression of the Hsp20 protein from O. oeni SD-2a for stress resistance. Notably, Hsp20 overexpression showed enhanced resistance than the control strain did when confronted with different elevated stress conditions. The results demonstrated heterologous expression of the hsp20 gene from O. oeni SD-2a significantly improved the resistance of the host E. coli bacteria against stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Guzzo J (2012) Biotechnical applications of small heat shock proteins from bacteria. Int J Biochem Cell Biol 44(10):1698–1705. https://doi.org/10.1016/j.biocel.2012.06.007

    Article  CAS  PubMed  Google Scholar 

  2. Horváth I, Glatz A, Nakamoto H, Mishkind ML, Munnik T, Saidi Y, Goloubinoff P, Harwood JL, Vigh L (2012) Heat shock response in photosynthetic organisms: membrane and lipid connections. Prog Lipid Res 51(3):208–220. https://doi.org/10.1016/j.plipres.2012.02.002

    Article  CAS  PubMed  Google Scholar 

  3. Narberhaus F (2002) α-Crystallin-type heat shock proteins: socializing minichaperones in the context of a multichaperone network. Microbiol Mol Biol Rev 66(1):64–93. https://doi.org/10.1128/MMBR.66.1.64-93.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cecconi D, Milli A, Rinalducci S, Zolla L, Zapparoli G (2010) Proteomic analysis of Oenococcus oeni freeze-dried culture to assess the importance of cell acclimation to conduct malolactic fermentation in wine. Electrophoresis 30(17):2988–2995. https://doi.org/10.1002/elps.200900228

    Article  CAS  Google Scholar 

  5. Dicks LMT (1994) Transformation of Leuconostoc oenos by electroporation. Biotechnol Tech 8(12):901–904. https://doi.org/10.1007/BF02447736

    Article  CAS  Google Scholar 

  6. Assad-García JS, Bonnin-Jusserand M, Garmyn D, Guzzo J, Alexandre H, Grandvalet C (2010) An improved protocol for electroporation of Oenococcus oeni ATCC BAA-1163 using ethanol as immediate membrane fluidizing agent. Lett Appl Microbiol 47(4):333–338. https://doi.org/10.1111/j.1472-765X.2008.02435.x

    Article  CAS  Google Scholar 

  7. Li H, Zhang CH, Liu YL (2006) Species attribution and distinguishing strains of Oenococcus oeni isolated from Chinese wines. World J Microbiol Biotechnol 22(5):515–518. https://doi.org/10.1007/s11274-005-9065-5

    Article  CAS  Google Scholar 

  8. Li H, Zhao WY, Wang H, Li ZC, Wang AL (2009) Influence of culture pH on freeze-drying viability of Oenococcus oeni and its relationship with fatty acid composition. Food Bioprod Process 87(C1):56–61. https://doi.org/10.1016/j.fbp.2008.06.001

    Article  CAS  Google Scholar 

  9. Giuseppe B (2004) Lysogeny at mid-twentieth century: P1, P2, and other experimental systems. J Bacteriol 186(3):595–600. https://doi.org/10.1128/JB.186.3.595-600.2004

    Article  CAS  Google Scholar 

  10. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and clustal X version 2.0. Bioinformatics 23(21):2947–2948. https://doi.org/10.1093/bioinformatics/btm404

    Article  CAS  Google Scholar 

  11. Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ (2009) Jalview Version 2-a multiple sequence alignment editor and analysis workbench. Bioinformatics 25(9):1189. https://doi.org/10.1093/bioinformatics/btp033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Laskowski RA, Macarthur MW, Moss DS, Thornton JMJ (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26(2):283–291. https://doi.org/10.1107/S0021889892009944

    Article  CAS  Google Scholar 

  13. Russell DW, Sambrook J (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor. https://doi.org/10.2307/1309366

    Article  Google Scholar 

  14. Chou CP (2007) Engineering cell physiology to enhance recombinant protein production in Escherichia coli. Appl Microbiol Biotechnol 76(3):521–532. https://doi.org/10.1007/s00253-007-1039-0

    Article  CAS  PubMed  Google Scholar 

  15. Hansen LH, Knudsen S, Sorensen SJ (1998) The effect of the lacY gene on the induction of IPTG inducible promoters, studied in Escherichia coli and Pseudomonas fluorescens. Curr Microbiol 36(6):341–347. https://doi.org/10.1007/s002849900320

    Article  CAS  PubMed  Google Scholar 

  16. Markwell J (2010) Fundamental laboratory approaches for biochemistry and biotechnology, 2nd edition. Biochem Mol Biol Educ 37(5):317–318. https://doi.org/10.1002/bmb.20321

    Article  CAS  Google Scholar 

  17. Weidmann S, Maitre M, Laurent J, Coucheney F, Rieu A, Guzzo J (2016) Production of the small heat shock protein Lo18 from Oenococcus oeni in Lactococcus lactis improves its stress tolerance. Int J Food Microbiol 247:18–23. https://doi.org/10.1016/j.ijfoodmicro.2016.06.005

    Article  CAS  PubMed  Google Scholar 

  18. D'Angelo L, Cicotello J, Zago M, Guglielmotti D, Quiberoni A, Suarez V (2017) Leuconostoc strains isolated from dairy products: response against food stress conditions. Food Microbiol 66:28–39. https://doi.org/10.1016/j.fm.2017.04.001

    Article  PubMed  Google Scholar 

  19. Rodriguez R, Chinea G, Lopez N, Pons T, Vriend G (1998) Homology modeling, model and software evaluation: three related resources. Bioinformatics 14(6):523–528. https://doi.org/10.1093/bioinformatics/14.6.523

    Article  CAS  PubMed  Google Scholar 

  20. Caspers GJ, Leunissen JAM, Jong WW (1995) The expanding small heat-shock protein family, and structure predictions of the conserved “α-crystallin domain”. J Mol Evol 40(3):238–248. https://doi.org/10.1007/bf00163229

    Article  CAS  PubMed  Google Scholar 

  21. Delmas F, Pierre F, Coucheney F, Divies C, Guzzo J (2001) Biochemical and physiological studies of the small heat shock protein Lo18 from the lactic acid bacterium Oenococcus oeni. J Mol Microbiol Biotechnol 3(4):601–610. https://doi.org/10.1038/sj.jim.7000196

    Article  CAS  PubMed  Google Scholar 

  22. Ronez F, Desroche N, Arbault P, Guzzo J (2012) Co-expression of the small heat shock protein, Lo18, with β-glucosidase in Escherichia coli improves solubilization and reveals various associations with overproduced heterologous protein, GroEL/ES. Biotechnol Lett 34(5):935–939. https://doi.org/10.1007/s10529-012-0854-2

    Article  CAS  PubMed  Google Scholar 

  23. Ezemaduka AN, Jiayu Y, Xiaodong S, Kaiming Z, Chang-Cheng Y, Xinmiao F, Zengyi C (2014) A small heat shock protein enables Escherichia coli to grow at a lethal temperature of 50 °C conceivably by maintaining cell envelope integrity. J Bacteriol 196(11):2004–2011. https://doi.org/10.1128/JB.01473-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Singh H, Appukuttan D, Lim S (2014) Hsp20, a small heat shock protein of Deinococcus radiodurans, confers tolerance to hydrogen peroxide in Escherichia coli. J Microbiol Biotechnol 24(8):1118–1122. https://doi.org/10.4014/jmb.1403.03006

    Article  CAS  PubMed  Google Scholar 

  25. Li Y, Xu X, Qu R, Zhang G, Rajoka MSR, Shao D, Jiang C, Shi J (2018) Heterologous expression of Oenococcus oeni sHSP20 confers temperature stress tolerance in Escherichia coli. Cell Stress Chaperones 23(4):1–10. https://doi.org/10.1007/s12192-018-0874-5

    Article  CAS  Google Scholar 

  26. Liu L, Zhao H, Peng S, Wang T, Su J, Liang Y, Li H, Wang H (2017) Transcriptomic analysis of Oenococcus oeni SD-2a response to acid shock by RNA-Seq. Front Microbiol 8:1586. https://doi.org/10.3389/fmicb.2017.01586

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This funding was supported by National Natural Science Foundation of China [Grant Nos. 31560441, 31260371, 31760381] and Natural Science Foundation of Tibet [Grant Nos. XZ2017ZRG-26, XZ2018ZRG-63].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guoqiang Zhang or Mingtao Fan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1591 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, Y., Liu, D., Yu, H. et al. Identification and Characterization of the Small Heat Shock Protein Hsp20 from Oenococcus oeni SD-2a. Curr Microbiol 77, 3595–3602 (2020). https://doi.org/10.1007/s00284-020-02168-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02168-z

Navigation