Skip to main content
Log in

Characterization of a Cryptic and Intriguing Low Molecular Weight Plasmid

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The complete nucleotide sequence of cryptic plasmid pVCM04 isolated from Salmonella enterica serovar Enteritidis was determined and analyzed. pVCM04 contains 3853 bp with 53.6 % GC content and has twelve ORFs with more than 50 amino acids. Five of these sequences showed homology with replication and mobilization proteins. ORF1 and ORF2 showed homology with replication proteins, while ORFs 3–5 showed homology with mobilization proteins. The pVCM04 possesses a region associated with the theta-type replication mechanism. BLASTn search analysis revealed unexpectedly no similarity with sequences deposited in GenBank. The nucleotide sequence of pVCM04 can be divided into two arms: the region between nucleotides 552–1774 (encoding RepA and RepB) and the region between nucleotides 1775–3853 (encoding MobA, MobB and MobC). Codon bias pattern is distinct between mobA and repA, so the program Modeltest was used to select the best evolutionary model to study these genes. The result of ModelTest (model GTR+G for mobA and model HKY+G for repA) suggests that these genes would be subject to different selective pressures. Considering the differences in the codon usage, the selection of two different evolutionary models, and the absence of plasmids with homology to pVCM04 in GenBank, we believe that pVCM04 is a chimeric molecule and represents a new plasmid lineage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bohez L, Gantois I, Ducatelle R, Pasmans F, Dewulf J, Haesebrouck F, Van Immerseel F (2008) The Salmonella Pathogenicity Island 2 regulator ssrA promotes reproductive tract but not intestinal colonization in chickens. Vet Microbiol 126:216–224

    Article  CAS  PubMed  Google Scholar 

  2. Bohez L, Ducatelle R, Pasmans F, Botteldoorn N, Haesebrouck F, Van Immerseel F (2006) Salmonella enterica serovar enteritidis colonization of the chicken caecum requires the HilA regulatory protein. Vet Microbiol 116:202–210

    Article  CAS  PubMed  Google Scholar 

  3. Chen CY, Nace GW, Solow B, Fratamico P (2007) Complete nucleotide sequences of 84.5- and 3.2-kb plasmids in the multi-antibiotic resistant Salmonella enterica serovar Typhimurium U302 strain G8430. Plasmid 57:29–43

    Article  CAS  PubMed  Google Scholar 

  4. Del Solar G, Giraldo R, Ruiz-Echevarria MJ, Espinosa M, Diaz-Orejas R (1998) Replication control of circular bacterial plasmids. Microbiol Mol Biol Rev 62:434–464

    PubMed Central  PubMed  Google Scholar 

  5. Ermolaeva M (2001) Synonymous codon usage in bacteria. Curr Issues Mol Biol 3:91–97

    CAS  PubMed  Google Scholar 

  6. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  CAS  PubMed  Google Scholar 

  7. Feutrier J, Kay WW, Trust TJ (1998) Cloning and expression of a Salmonella enteritidis fimbrin gene in Escherichia coli. J Bacteriol 170:4216–4222

    Google Scholar 

  8. Francia M, Varsaki A, Garcillan-Barcia M, Latorre A, Drainas C, Cruz F (2004) A classification scheme for mobilization regions of bacterial plasmids. FEMS Microbiol Rev 28:79–100

    Article  CAS  PubMed  Google Scholar 

  9. Furmanek-Blaszk B, Kurpiewska N, Boratynski R, Sektas M (2013) Molecular characterization of plasmid pMbo4.6 of Moraxella bovis ATCC 10900. Curr Microbiol 66:205–213

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Garcia-Vallve S, Palau J, Romeu A (1999) Horizontal gene transfer in glycosyl hydrolases inferred from codon usage in E. coli and Bacillus subtilis. Mol Biol Evol 16:1125–1134

    Article  CAS  PubMed  Google Scholar 

  11. Gregorova D, Matiasovicova J, Sebkova A, Faldynova M, Rychlik I (2004) Salmonella enterica subsp. enterica serovar Enteritidis harbours ColE1, ColE2, and rolling-circle-like replicating plasmids. Can J Microbiol 50:107–112

    Article  CAS  PubMed  Google Scholar 

  12. Haneda T, Okada N, Miki T, Danbara H (2004) Sequence analysis and characterization of sulfonamide resistance plasmid pRF-1 from Salmonella enterica serovar Choleraesuis. Plasmid 52:218–224

    Article  CAS  PubMed  Google Scholar 

  13. Hoelzer K, Switt AI, Wiedmann M (2011) Animal contact as a source of human non-typhoidal salmonellosis. Vet Res 42:23–28

    Article  Google Scholar 

  14. Ito H, Ishii H, Akiba M (2004) Analysis of the complete nucleotide sequence of an Actinobacillus pleuropneumoniae streptomycin–sulfonamide resistance plasmid, pMS260. Plasmid 51:41–47

    Article  CAS  PubMed  Google Scholar 

  15. Jorgesen TS, Xu Z, Hansen MA, Sorensen SJ, Hansem LH (2014) Hundreds of circular novel plasmids and DNA elements identified in a rat cecum metamobilome. PLoS ONE 9:2. doi:10.1371/journal.pone.0087924

    Google Scholar 

  16. Pacek M, Konopa G, Konieczny I (2001) DnaA box sequences as the site for helicase delivery during plasmid RK2 replication initiation in Escherichia coli. J Biol Chem 276:23639–23644

    Article  CAS  PubMed  Google Scholar 

  17. Papanikolaou N, Trachana K, Theodosious T, Promponas V, Iliopoulos I (2009) Gene socialization: gene order, GC content and gene silencing in Salmonella. BMC Gen 10:597. doi:10.1186/1471-2164-10-597

    Article  Google Scholar 

  18. Penido AF, Mendes PV, Campos IT, Bataus LAM (2013) Sequence analysis and characterization of rolling-circle replicating plasmid pVCM01 from Salmonela enteric. Malays J Microbiol 9:331–334

    Google Scholar 

  19. Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  CAS  PubMed  Google Scholar 

  20. Rozhon W, Petuschnig E, Khan M, Sumers D, Poppenberger B (2010) Frequency and diversity of small cryptic plasmids in the genus Rahnella. BMC Microbiol 10:2–13

    Article  Google Scholar 

  21. Rychlik I, Svestkovaa A, Karpiskovab R (2000) Subdivision of Salmonella enterica serovar enteritidis. Vet Microbiol 74:217–225

    Article  CAS  PubMed  Google Scholar 

  22. Rychlik I, Gregorova D, Hradecka H (2006) Distribution and function of plasmids in Salmonella enteric. Vet Microbiol 112:1–10

    Article  CAS  PubMed  Google Scholar 

  23. Rychlik I, Karpiskova R, Faldynova M, Sisak F (1998) Computer-assisted restriction endonuclease analysis of plasmid DNA in field strains of Salmonella enteritidis. Can J Microbiol 44:1183–1185

    Article  CAS  PubMed  Google Scholar 

  24. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning, a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Pres, New York

    Google Scholar 

  25. Sharma V, Stanton T (2008) Characterization of a 3.3-kb plasmid of Escherichia coli O157:H7 and evaluation of stability of genetically engineered derivatives of this plasmid expressing green fluorescence. Vet Microbiol 132:421–427

    Article  CAS  PubMed  Google Scholar 

  26. Smith KP, George J, Cadle KM, Kumar S, Aragon SJ, Hernandez RL, Jones SE, Floyd JL, Varela MF (2010) Elucidation of antimicrobial susceptibility profiles and genotyping of Salmonella enterica isolates from clinical cases of salmonellosis in New Mexico in 2008. World J Microbiol Biotechnol 26:1025–1031

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Suh DK, Song JC (2006) Analysis of Salmonella enteric serotype Enteretidis isolated from human and chickens by repetitive sequence-PCR fingerprinting, antibiotic resistance and plasmid profiles. J Vet Sci 7:37–41

    Article  PubMed Central  PubMed  Google Scholar 

  28. Swofford DLPAUP (2002) Phylogenetic analysis using parsimony (and other methods), version, 4th edn. Sinauer Associates, Sunderland

    Google Scholar 

  29. Thompson J, Higgins D, Gibson T (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the National Council for the Improvement of Higher Education (CAPES) for the scholarship and financial support and National Council for Scientific and Technological Development (CNPq) for financial support 47.8545.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz Artur M. Bataus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carneiro, L.C., Mendes, P.V.C., Silva, S.P. et al. Characterization of a Cryptic and Intriguing Low Molecular Weight Plasmid. Curr Microbiol 72, 351–356 (2016). https://doi.org/10.1007/s00284-015-0959-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-015-0959-7

Keywords

Navigation