Skip to main content

Advertisement

Log in

Neuropathogenesis of HIV-1: insights from across the spectrum of acute through long-term treated infection

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

This review outlines the neuropathogenesis of HIV, from initial HIV entry into the central nervous system (CNS) to chronic infection, focusing on key advancements in the last 5 years. Discoveries regarding acute HIV infection reveal timing and mechanisms of early HIV entry and replication in the CNS, early inflammatory responses, and establishment of genetically distinct viral reservoirs in the brain. Recent studies additionally explore how chronic HIV infection is maintained in the CNS, examining how the virus remains in a latent “hidden” state in diverse cells in the brain, and how this leads to sustained pathological inflammatory responses. Despite viral suppression with antiretroviral therapy, HIV can persist and even replicate in the CNS, and associate with ongoing neuropathology including CD8 + T-lymphocyte mediated encephalitis. Crucial investigation to advance our understanding of the immune mechanisms that both control viral infection and lead to pathological consequences in the brain is necessary to develop treatments to optimize long-term neurologic health in people living with HIV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. HIV Surveillance Report: (2020) Supplemental Report, Centers for Disease Control and Prevention

  2. Estimated number of people (all ages) living with HIV (2020) World Health Organization

  3. Zayyad Z, Spudich S (2015) Neuropathogenesis of HIV: from initial neuroinvasion to HIV-associated neurocognitive disorder (HAND). Curr HIV/AIDS Rep 12:16–24

    Article  PubMed  PubMed Central  Google Scholar 

  4. Veenstra M, Leon-Rivera R, Li M, Gama L, Clements JE, Berman JW (2017) Mechanisms of CNS viral seeding by HIV(+) CD14(+) CD16(+) monocytes: establishment and reseeding of viral reservoirs contributing to HIV-associated neurocognitive disorders. mBio mBio 8(5):e01280-17

  5. Fiebig EW, Wright DJ, Rawal BD, Garrett PE, Schumacher RT, Peddada L, Heldebrant C, Smith R, Conrad A, Kleinman SH, Busch MP (2003) Dynamics of HIV viremia and antibody seroconversion in plasma donors: implications for diagnosis and staging of primary HIV infection. AIDS 17:1871–1879

    Article  PubMed  Google Scholar 

  6. Spudich S, Peterson J, Fuchs D, Price RW, Gisslen M (2019) Potential for early antiretroviral therapy to reduce central nervous system HIV-1 persistence. AIDS 33(Suppl 2):S135–S144

    Article  CAS  PubMed  Google Scholar 

  7. Valcour V, Chalermchai T, Sailasuta N, Marovich M, Lerdlum S, Suttichom D, Suwanwela NC, Jagodzinski L, Michael N, Spudich S, van Griensven F, de Souza M, Kim J, Ananworanich J, Group RSS (2012) Central nervous system viral invasion and inflammation during acute HIV infection. J Infect Dis 206:275–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chan P, Patel P, Hellmuth J, Colby DJ, Kroon E, Sacdalan C, Pinyakorn S, Jagodzinski L, Krebs S, Ananworanich J, Valcour V, Spudich S, Team RSS (2018) Distribution of human immunodeficiency virus (HIV) ribonucleic acid in cerebrospinal fluid and blood is linked to CD4/CD8 ratio during acute HIV. J Infect Dis 218:937–945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Andras IE, Pu H, Deli MA, Nath A, Hennig B, Toborek M (2003) HIV-1 Tat protein alters tight junction protein expression and distribution in cultured brain endothelial cells. J Neurosci Res 74:255–265

    Article  CAS  PubMed  Google Scholar 

  10. Xu R, Feng X, Xie X, Zhang J, Wu D, Xu L (2012) HIV-1 Tat protein increases the permeability of brain endothelial cells by both inhibiting occludin expression and cleaving occludin via matrix metalloproteinase-9. Brain Res 1436:13–19

    Article  CAS  PubMed  Google Scholar 

  11. Rojas-Celis V, Valiente-Echeverria F, Soto-Rifo R, Toro-Ascuy D (2019) New challenges of HIV-1 infection: how HIV-1 attacks and resides in the central nervous system. Cells 8:1245

  12. Banks WA, Kastin AJ, Akerstrom V (1997) HIV-1 protein gp120 crosses the blood-brain barrier: role of adsorptive endocytosis. Life Sci 61:PL119-25

    Article  CAS  PubMed  Google Scholar 

  13. Campbell JH, Ratai EM, Autissier P, Nolan DJ, Tse S, Miller AD, Gonzalez RG, Salemi M, Burdo TH, Williams KC (2014) Anti-alpha4 antibody treatment blocks virus traffic to the brain and gut early, and stabilizes CNS injury late in infection. PLoS Pathog 10:e1004533

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sturdevant CB, Joseph SB, Schnell G, Price RW, Swanstrom R, Spudich S (2015) Compartmentalized replication of R5 T cell-tropic HIV-1 in the central nervous system early in the course of infection. PLoS Pathog 11:e1004720

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lee CA, Beasley E, Sundar K, Smelkinson M, Vinton C, Deleage C, Matsuda K, Wu F, Estes JD, Lafont BAP, Brenchley JM, Hirsch VM (2020) Simian immunodeficiency virus-infected memory CD4(+) T cells infiltrate to the site of infected macrophages in the neuroparenchyma of a chronic macaque model of neurological complications of AIDS. mBio 11(2):e00602-20

  16. Sharma V, Creegan M, Tokarev A, Hsu D, Slike BM, Sacdalan C, Chan P, Spudich S, Ananworanich J, Eller MA, Krebs SJ, Vasan S, Bolton DL, Rv254/Search, Teams RSS (2021) Cerebrospinal fluid CD4+ T cell infection in humans and macaques during acute HIV-1 and SHIV infection. PLoS Pathog 17:e1010105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Russell RA, Chojnacki J, Jones DM, Johnson E, Do T, Eggeling C, Padilla-Parra S, Sattentau QJ (2017) Astrocytes resist HIV-1 fusion but engulf infected macrophage material. Cell Rep 18:1473–1483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Carroll-Anzinger D, Al-Harthi L (2006) Gamma interferon primes productive human immunodeficiency virus infection in astrocytes. J Virol 80:541–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ash MK, Al-Harthi L, Schneider JR (2021) HIV in the brain: identifying viral reservoirs and addressing the challenges of an HIV cure. Vaccines (Basel) 9:867

  20. Li GH, Maric D, Major EO, Nath A (2020) Productive HIV infection in astrocytes can be established via a nonclassical mechanism. AIDS 34:963–978

    Article  CAS  PubMed  Google Scholar 

  21. Bertin J, Jalaguier P, Barat C, Roy MA, Tremblay MJ (2014) Exposure of human astrocytes to leukotriene C4 promotes a CX3CL1/fractalkine-mediated transmigration of HIV-1-infected CD4(+) T cells across an in vitro blood-brain barrier model. Virology 454–455:128–138

    Article  PubMed  Google Scholar 

  22. Subra C, Trautmann L (2019) Role of T lymphocytes in HIV neuropathogenesis. Curr HIV/AIDS Rep 16(3):236–243

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lee KM, Chiu KB, Renner NA, Sansing HA, Didier PJ, MacLean AG (2014) Form follows function: astrocyte morphology and immune dysfunction in SIV neuroAIDS. J Neurovirol 20:474–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Williams DW, Calderon TM, Lopez L, Carvallo-Torres L, Gaskill PJ, Eugenin EA, Morgello S, Berman JW (2013) Mechanisms of HIV entry into the CNS: increased sensitivity of HIV infected CD14+CD16+ monocytes to CCL2 and key roles of CCR2, JAM-A, and ALCAM in diapedesis. PLoS ONE 8:e69270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nickoloff-Bybel EA, Calderon TM, Gaskill PJ, Berman JW (2020) HIV Neuropathogenesis in the presence of a disrupted dopamine system. J Neuroimmune Pharmacol 15:729–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Calderon TM, Williams DW, Lopez L, Eugenin EA, Cheney L, Gaskill PJ, Veenstra M, Anastos K, Morgello S, Berman JW (2017) Dopamine Increases CD14(+)CD16(+) Monocyte transmigration across the blood brain barrier: implications for substance abuse and HIV neuropathogenesis. J Neuroimmune Pharmacol 12:353–370

    Article  PubMed  PubMed Central  Google Scholar 

  27. Coley JS, Calderon TM, Gaskill PJ, Eugenin EA, Berman JW (2015) Dopamine increases CD14+CD16+ monocyte migration and adhesion in the context of substance abuse and HIV neuropathogenesis. PLoS ONE 10:e0117450

    Article  PubMed  PubMed Central  Google Scholar 

  28. Carvallo L, Lopez L, Fajardo JE, Jaureguiberry-Bravo M, Fiser A, Berman JW (2017) HIV-Tat regulates macrophage gene expression in the context of neuroAIDS. PLoS ONE 12:e0179882

    Article  PubMed  PubMed Central  Google Scholar 

  29. McRae M (2016) HIV and viral protein effects on the blood brain barrier. Tissue Barriers 4:e1143543

    Article  PubMed  PubMed Central  Google Scholar 

  30. Williams ME, Zulu SS, Stein DJ, Joska JA, Naude PJW (2020) Signatures of HIV-1 subtype B and C Tat proteins and their effects in the neuropathogenesis of HIV-associated neurocognitive impairments. Neurobiol Dis 136:104701

    Article  CAS  PubMed  Google Scholar 

  31. Rao VR, Sas AR, Eugenin EA, Siddappa NB, Bimonte-Nelson H, Berman JW, Ranga U, Tyor WR, Prasad VR (2008) HIV-1 clade-specific differences in the induction of neuropathogenesis. J Neurosci 28:10010–10016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sonti S, Sharma AL, Tyagi M (2021) HIV-1 persistence in the CNS: mechanisms of latency, pathogenesis and an update on eradication strategies. Virus Res 303:198523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bethel-Brown C, Yao H, Hu G, Buch S (2012) Platelet-derived growth factor (PDGF)-BB-mediated induction of monocyte chemoattractant protein 1 in human astrocytes: implications for HIV-associated neuroinflammation. J Neuroinflammation 9:262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Spudich SS (2016) Immune activation in the central nervous system throughout the course of HIV infection. Curr Opin HIV AIDS 11:226–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Thangaraj A, Periyasamy P, Liao K, Bendi VS, Callen S, Pendyala G, Buch S (2018) HIV-1 TAT-mediated microglial activation: role of mitochondrial dysfunction and defective mitophagy. Autophagy 14:1596–1619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Samikkannu T, Atluri VS, Arias AY, Rao KV, Mulet CT, Jayant RD, Nair MP (2014) HIV-1 subtypes B and C Tat differentially impact synaptic plasticity expression and implicates HIV-associated neurocognitive disorders. Curr HIV Res 12:397–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Haughey NJ, Nath A, Mattson MP, Slevin JT, Geiger JD (2001) HIV-1 Tat through phosphorylation of NMDA receptors potentiates glutamate excitotoxicity. J Neurochem 78:457–467

    Article  CAS  PubMed  Google Scholar 

  38. Hu XT (2016) HIV-1 Tat-mediated calcium dysregulation and neuronal dysfunction in vulnerable brain regions. Curr Drug Targets 17:4–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Var SR, Day TR, Vitomirov A, Smith DM, Soontornniyomkij V, Moore DJ, Achim CL, Mehta SR, Perez-Santiago J (2016) Mitochondrial injury and cognitive function in HIV infection and methamphetamine use. AIDS 30:839–848

    Article  CAS  PubMed  Google Scholar 

  40. Kessing CF, Spudich S, Valcour V, Cartwright P, Chalermchai T, Fletcher JL, Takata H, Nichols C, Josey BJ, Slike B, Krebs SJ, Sailsuta N, Lerdlum S, Jagodzinski L, Tipsuk S, Suttichom D, Rattanamanee S, Zetterberg H, Hellmuth J, Phanuphak N, Robb ML, Michael NL, Ananworanich J, Trautmann L (2017) High number of activated CD8+ T cells targeting HIV antigens are present in cerebrospinal fluid in acute HIV infection. J Acquir Immune Defic Syndr 75:108–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Valcour VG, Spudich SS, Sailasuta N, Phanuphak N, Lerdlum S, Fletcher JL, Kroon ED, Jagodzinski LL, Allen IE, Adams CL, Prueksakaew P, Slike BM, Hellmuth JM, Kim JH, Ananworanich J, Group SRS (2015) Neurological response to cART vs. cART plus integrase inhibitor and CCR5 antagonist initiated during acute HIV. PLoS One 10:e0142600

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ho EL, Ronquillo R, Altmeppen H, Spudich SS, Price RW, Sinclair E (2013) Cellular composition of cerebrospinal fluid in HIV-1 infected and uninfected subjects. PLoS ONE 8:e66188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Subra CFF, Buranapraditkun S , Chan P ,  Sacdalan C,  Tangnaree K, Rolland M, Krebs S,  Sailasuta N, Tovanabutra S, Paul R, Michael NL, Robb M, Ananworanich J, Spudich S,  Trautmann L (2019) CSF HIV specific T cells persist during ART and associate with lower CNS inflammation. Presented at CROI, Seattle, WA

  44. Ananworanich J, Sacdalan CP, Pinyakorn S, Chomont N, de Souza M, Luekasemsuk T, Schuetz A, Krebs SJ, Dewar R, Jagodzinski L, Ubolyam S, Trichavaroj R, Tovanabutra S, Spudich S, Valcour V, Sereti I, Michael N, Robb M, Phanuphak P, Kim JH, Phanuphak N (2016) Virological and immunological characteristics of HIV-infected individuals at the earliest stage of infection. J Virus Erad 2:43–48

    Article  PubMed  PubMed Central  Google Scholar 

  45. Shive CL, Jiang W, Anthony DD, Lederman MM (2015) Soluble CD14 is a nonspecific marker of monocyte activation. AIDS 29:1263–1265

    Article  CAS  PubMed  Google Scholar 

  46. Burdo TH, Lentz MR, Autissier P, Krishnan A, Halpern E, Letendre S, Rosenberg ES, Ellis RJ, Williams KC (2011) Soluble CD163 made by monocyte/macrophages is a novel marker of HIV activity in early and chronic infection prior to and after anti-retroviral therapy. J Infect Dis 204:154–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Takata H, Buranapraditkun S, Kessing C, Fletcher JL, Muir R, Tardif V, Cartwright P, Vandergeeten C, Bakeman W, Nichols CN, Pinyakorn S, Hansasuta P, Kroon E, Chalermchai T, O'Connell R, Kim J, Phanuphak N, Robb ML, Michael NL, Chomont N, Haddad EK, Ananworanich J, Trautmann L, Rv254/Search, the RVSSG (2017) Delayed differentiation of potent effector CD8(+) T cells reducing viremia and reservoir seeding in acute HIV infection. Sci Transl Med 9(377):eaag1809

  48. Sailasuta N, Ross W, Ananworanich J, Chalermchai T, DeGruttola V, Lerdlum S, Pothisri M, Busovaca E, Ratto-Kim S, Jagodzinski L, Spudich S, Michael N, Kim JH, Valcour V, teams RSp. (2012) Change in brain magnetic resonance spectroscopy after treatment during acute HIV infection. PLoS ONE 7:e49272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tovanabutra S, Sirijatuphat R, Pham PT, Bonar L, Harbolick EA, Bose M, Song H, Chang D, Oropeza C, O'Sullivan AM, Balinang J, Kroon E, Colby DJ, Sacdalan C, Hellmuth J, Chan P, Prueksakaew P, Pinyakorn S, Jagodzinski LL, Sutthichom D, Pattamaswin S, de Souza M, Gramzinski RA, Kim JH, Michael NL, Robb ML, Phanuphak N, Ananworanich J, Valcour V, Kijak GH, Sanders-Buell E, Spudich S, Core MVS, Team RSS (2019) Deep sequencing reveals central nervous system compartmentalization in multiple transmitted/founder virus acute HIV-1 infection. Cells 8

  50. Joseph SB, Kincer LP, Bowman NM, Evans C, Vinikoor MJ, Lippincott CK, Gisslen M, Spudich S, Menezes P, Robertson K, Archin N, Kashuba A, Eron JJ, Price RW, Swanstrom R (2019) Human immunodeficiency virus type 1 RNA detected in the central nervous system (CNS) after years of suppressive antiretroviral therapy can originate from a replicating CNS reservoir or clonally expanded cells. Clin Infect Dis 69:1345–1352

    Article  PubMed  Google Scholar 

  51. Schnell G, Joseph S, Spudich S, Price RW, Swanstrom R (2011) HIV-1 replication in the central nervous system occurs in two distinct cell types. PLoS Pathog 7:e1002286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lustig G, Cele S, Karim F, Derache A, Ngoepe A, Khan K, Gosnell BI, Moosa MS, Ntshuba N, Marais S, Jeena PM, Govender K, Adamson J, Kloverpris H, Gupta RK, Harrichandparsad R, Patel VB, Sigal A (2021) T cell derived HIV-1 is present in the CSF in the face of suppressive antiretroviral therapy. PLoS Pathog 17:e1009871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Balinang JCD, Jobe O, Sanders-Buell E, Chenine A, Mann B, Merbah M, Alvarez-Carbonell D, Bose M, Barrows B et al October 21–25 (2018) Differential infection of cultured peripheral and CNS cells by distinct transmitted/founder HIV-1 infectious molecular clones. Presented at Proceedings of the HIV Research for Prevention (HIVR4P 2018), Madrid, Spain

  54. Spudich S, Clements JE (2019) HIV persistence in the central nervous system during antiretroviral therapy: evidence and implications. AIDS 33(Suppl 2):S103–S106

    Article  CAS  PubMed  Google Scholar 

  55. Honeycutt JB, Liao B, Nixon CC, Cleary RA, Thayer WO, Birath SL, Swanson MD, Sheridan P, Zakharova O, Prince F, Kuruc J, Gay CL, Evans C, Eron JJ, Wahl A, Garcia JV (2018) T cells establish and maintain CNS viral infection in HIV-infected humanized mice. J Clin Invest 128:2862–2876

    Article  PubMed  PubMed Central  Google Scholar 

  56. Smolders J, Remmerswaal EB, Schuurman KG, Melief J, van Eden CG, van Lier RA, Huitinga I, Hamann J (2013) Characteristics of differentiated CD8(+) and CD4 (+) T cells present in the human brain. Acta Neuropathol 126:525–535

    Article  CAS  PubMed  Google Scholar 

  57. Strazielle N, Creidy R, Malcus C, Boucraut J, Ghersi-Egea JF (2016) T-lymphocytes traffic into the brain across the blood-CSF barrier: evidence using a reconstituted choroid plexus epithelium. PLoS ONE 11:e0150945

    Article  PubMed  PubMed Central  Google Scholar 

  58. Farhadian SF, Mehta SS, Zografou C, Robertson K, Price RW, Pappalardo J, Chiarella J, Hafler DA, Spudich SS (2018) Single-cell RNA sequencing reveals microglia-like cells in cerebrospinal fluid during virologically suppressed HIV. JCI Insight 3(18):e121718

  59. Gray LR, Cowley D, Welsh C, Lu HK, Brew BJ, Lewin SR, Wesselingh SL, Gorry PR, Churchill MJ (2016) CNS-specific regulatory elements in brain-derived HIV-1 strains affect responses to latency-reversing agents with implications for cure strategies. Mol Psychiatry 21:574–584

    Article  CAS  PubMed  Google Scholar 

  60. Li J, Chen C, Ma X, Geng G, Liu B, Zhang Y, Zhang S, Zhong F, Liu C, Yin Y, Cai W, Zhang H (2016) Long noncoding RNA NRON contributes to HIV-1 latency by specifically inducing tat protein degradation. Nat Commun 7:11730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Turrini F, Marelli S, Kajaste-Rudnitski A, Lusic M, Van Lint C, Das AT, Harwig A, Berkhout B, Vicenzi E (2015) HIV-1 transcriptional silencing caused by TRIM22 inhibition of Sp1 binding to the viral promoter. Retrovirology 12:104

    Article  PubMed  PubMed Central  Google Scholar 

  62. Marcello A, Ferrari A, Pellegrini V, Pegoraro G, Lusic M, Beltram F, Giacca M (2003) Recruitment of human cyclin T1 to nuclear bodies through direct interaction with the PML protein. EMBO J 22:2156–2166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Maine GN, Mao X, Komarck CM, Burstein E (2007) COMMD1 promotes the ubiquitination of NF-kappaB subunits through a cullin-containing ubiquitin ligase. EMBO J 26:436–447

    Article  CAS  PubMed  Google Scholar 

  64. Alvarez-Carbonell D, Ye F, Ramanath N, Garcia-Mesa Y, Knapp PE, Hauser KF, Karn J (2019) Cross-talk between microglia and neurons regulates HIV latency. PLoS Pathog 15:e1008249

    Article  PubMed  PubMed Central  Google Scholar 

  65. Aspelund A, Antila S, Proulx ST, Karlsen TV, Karaman S, Detmar M, Wiig H, Alitalo K (2015) A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med 212:991–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chaillon A, Gianella S, Dellicour S, Rawlings SA, Schlub TE, De Oliveira MF, Ignacio C, Porrachia M, Vrancken B, Smith DM (2020) HIV persists throughout deep tissues with repopulation from multiple anatomical sources. J Clin Invest 130:1699–1712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wei J, Hou J, Su B, Jiang T, Guo C, Wang W, Zhang Y, Chang B, Wu H, Zhang T (2020) The prevalence of Frascati-criteria-based HIV-associated neurocognitive disorder (HAND) in HIV-infected adults: a systematic review and meta-analysis. Front Neurol 11:581346

    Article  PubMed  PubMed Central  Google Scholar 

  68. Antinori A, Arendt G, Becker JT, Brew BJ, Byrd DA, Cherner M, Clifford DB, Cinque P, Epstein LG, Goodkin K, Gisslen M, Grant I, Heaton RK, Joseph J, Marder K, Marra CM, McArthur JC, Nunn M, Price RW, Pulliam L, Robertson KR, Sacktor N, Valcour V, Wojna VE (2007) Updated research nosology for HIV-associated neurocognitive disorders. Neurology 69:1789–1799

    Article  CAS  PubMed  Google Scholar 

  69. Nightingale S, Dreyer AJ, Saylor D, Gisslen M, Winston A, Joska JA (2021) Moving on from HAND: why we need new criteria for cognitive impairment in persons living with human immunodeficiency virus and a proposed way forward. Clin Infect Dis 73:1113–1118

    Article  PubMed  Google Scholar 

  70. Wang Y, Liu M, Lu Q, Farrell M, Lappin JM, Shi J, Lu L, Bao Y (2020) Global prevalence and burden of HIV-associated neurocognitive disorder: a meta-analysis. Neurology 95:e2610–e2621

    Article  CAS  PubMed  Google Scholar 

  71. Langford D, Marquie-Beck J, de Almeida S, Lazzaretto D, Letendre S, Grant I, McCutchan JA, Masliah E, Ellis RJ (2006) Relationship of antiretroviral treatment to postmortem brain tissue viral load in human immunodeficiency virus-infected patients. J Neurovirol 12:100–107

    Article  PubMed  Google Scholar 

  72. Jessen Krut J, Mellberg T, Price RW, Hagberg L, Fuchs D, Rosengren L, Nilsson S, Zetterberg H, Gisslen M (2014) Biomarker evidence of axonal injury in neuroasymptomatic HIV-1 patients. PLoS ONE 9:e88591

    Article  PubMed  PubMed Central  Google Scholar 

  73. D’Antoni ML, Byron MM, Chan P, Sailasuta N, Sacdalan C, Sithinamsuwan P, Tipsuk S, Pinyakorn S, Kroon E, Slike BM, Krebs SJ, Khadka VS, Chalermchai T, Kallianpur KJ, Robb M, Spudich S, Valcour V, Ananworanich J, Ndhlovu LC, Rv254/Search S Groups RSS (2018) Normalization of soluble CD163 levels after institution of antiretroviral therapy during acute HIV infection tracks with fewer neurological abnormalities. J Infect Dis 218:1453–1463

    Article  PubMed  PubMed Central  Google Scholar 

  74. Gisslen M, Heslegrave A, Veleva E, Yilmaz A, Andersson LM, Hagberg L, Spudich S, Fuchs D, Price RW, Zetterberg H (2019) CSF concentrations of soluble TREM2 as a marker of microglial activation in HIV-1 infection. Neurol Neuroimmunol Neuroinflamm 6:e512

    Article  PubMed  Google Scholar 

  75. Hellmuth J, Slike BM, Sacdalan C, Best J, Kroon E, Phanuphak N, Fletcher JLK, Prueksakaew P, Jagodzinski LL, Valcour V, Robb M, Ananworanich J, Allen IE, Krebs SJ, Spudich S (2019) Very early initiation of antiretroviral therapy during acute HIV infection is associated with normalized levels of immune activation markers in cerebrospinal fluid but not in plasma. J Infect Dis 220:1885–1891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Burbelo PD, Price RW, Hagberg L, Hatano H, Spudich S, Deeks SG, Gisslen M (2018) Anti-human immunodeficiency virus antibodies in the cerebrospinal fluid: evidence of early treatment impact on central nervous system reservoir? J Infect Dis 217:1024–1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bundell C, Brunt SJ, Cysique LA, Brusch A, Brew BJ, Price P (2018) The high frequency of autoantibodies in HIV patients declines on antiretroviral therapy. Pathology 50:313–316

    Article  CAS  PubMed  Google Scholar 

  78. Oliveira MF, Chaillon A, Nakazawa M, Vargas M, Letendre SL, Strain MC, Ellis RJ, Morris S, Little SJ, Smith DM, Gianella S (2017) Early antiretroviral therapy is associated with lower HIV DNA molecular diversity and lower inflammation in cerebrospinal fluid but does not prevent the establishment of compartmentalized HIV DNA Populations. PLoS Pathog 13:e1006112

    Article  PubMed  PubMed Central  Google Scholar 

  79. Winston A, Antinori A, Cinque P, Fox HS, Gisslen M, Henrich TJ, Letendre S, Persaud D, Price RW, Spudich S (2019) Defining cerebrospinal fluid HIV RNA escape: editorial review AIDS. AIDS 33(Suppl 2):S107–S111

    Article  CAS  PubMed  Google Scholar 

  80. Eden A, Fuchs D, Hagberg L, Nilsson S, Spudich S, Svennerholm B, Price RW, Gisslen M (2010) HIV-1 viral escape in cerebrospinal fluid of subjects on suppressive antiretroviral treatment. J Infect Dis 202:1819–1825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Handoko R, Chan P, Jagodzinski L, Pinyakorn S, Ubolyam S, Phanuphak N, Sacdalan C, Kroon E, Dumrongpisutikul N, Paul R, Valcour V, Ananworanich J, Vasan S, Spudich S, Team SRS (2021) Minimal detection of cerebrospinal fluid escape after initiation of antiretroviral therapy in acute HIV-1 infection. AIDS 35:777–782

    Article  CAS  PubMed  Google Scholar 

  82. de Almeida SM, Rotta I, de Pereira AP, Tang B, Umlauf A, Ribeiro CEL, Letendre S, Ellis RJ, Group HIVNRC (2020) Cerebrospinal fluid pleocytosis as a predictive factor for CSF and plasma HIV RNA discordance and escape. J Neurovirol 26:241–251

    Article  PubMed  PubMed Central  Google Scholar 

  83. Manesh A, Barnabas R, Mani S, Karthik R, Abraham OC, Chacko G, Kannangai R, Varghese GM (2019) Symptomatic HIV CNS viral escape among patients on effective cART. Int J Infect Dis 84:39–43

    Article  PubMed  Google Scholar 

  84. Moloney PB, Hutchinson S, Heskin J, Mulcahy F, Langan Y, Conlon NP, Linas BP, Takahashi C, Cervantes-Arslanian AM (2020) Possible N-methyl-D-aspartate receptor antibody-mediated encephalitis in the setting of HIV cerebrospinal fluid escape. J Neurol 267:1348–1352

    Article  CAS  PubMed  Google Scholar 

  85. Peluso MJ, Ferretti F, Peterson J, Lee E, Fuchs D, Boschini A, Gisslen M, Angoff N, Price RW, Cinque P, Spudich S (2012) Cerebrospinal fluid HIV escape associated with progressive neurologic dysfunction in patients on antiretroviral therapy with well controlled plasma viral load. AIDS 26:1765–1774

    Article  CAS  PubMed  Google Scholar 

  86. Narvid J, Callen A, Talbott J, Uzelac A, Dupont SM, Chow F, Price RW, Rehani B (2018) Brain MRI features of CSF human immunodeficiency virus escape. J Neuroimaging 28:601–607

    Article  PubMed  Google Scholar 

  87. Mukerji SS, Misra V, Lorenz D, Cervantes-Arslanian AM, Lyons J, Chalkias S, Wurcel A, Burke D, Venna N, Morgello S, Koralnik IJ, Gabuzda D (2017) Temporal patterns and drug resistance in CSF viral escape among ART-experienced HIV-1 infected adults. J Acquir Immune Defic Syndr 75:246–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Nightingale S, Geretti AM, Beloukas A, Fisher M, Winston A, Else L, Nelson M, Taylor S, Ustianowski A, Ainsworth J, Gilson R, Haddow L, Ong E, Watson V, Leen C, Minton J, Post F, Pirmohamed M, Solomon T, Khoo S (2016) Discordant CSF/plasma HIV-1 RNA in patients with unexplained low-level viraemia. J Neurovirol 22:852–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Swanta N, Aryal S, Nejtek V, Shenoy S, Ghorpade A, Borgmann K (2020) Blood-based inflammation biomarkers of neurocognitive impairment in people living with HIV. J Neurovirol 26:358–370

    Article  PubMed  PubMed Central  Google Scholar 

  90. Hong S, Banks WA (2015) Role of the immune system in HIV-associated neuroinflammation and neurocognitive implications. Brain Behav Immun 45:1–12

    Article  CAS  PubMed  Google Scholar 

  91. Vera JH, Guo Q, Cole JH, Boasso A, Greathead L, Kelleher P, Rabiner EA, Kalk N, Bishop C, Gunn RN, Matthews PM, Winston A (2016) Neuroinflammation in treated HIV-positive individuals: A TSPO PET study. Neurology 86:1425–1432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kamat A, Lyons JL, Misra V, Uno H, Morgello S, Singer EJ, Gabuzda D (2012) Monocyte activation markers in cerebrospinal fluid associated with impaired neurocognitive testing in advanced HIV infection. J Acquir Immune Defic Syndr 60:234–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Nolan RA, Muir R, Runner K, Haddad EK, Gaskill PJ (2019) Role of macrophage dopamine receptors in mediating cytokine production: implications for neuroinflammation in the context of HIV-associated neurocognitive disorders. J Neuroimmune Pharmacol 14:134–156

    Article  CAS  PubMed  Google Scholar 

  94. Yilmaz A, Yiannoutsos CT, Fuchs D, Price RW, Crozier K, Hagberg L, Spudich S, Gisslen M (2013) Cerebrospinal fluid neopterin decay characteristics after initiation of antiretroviral therapy. J Neuroinflammation 10:62

    Article  PubMed  PubMed Central  Google Scholar 

  95. Brew BJ, Dunbar N, Pemberton L, Kaldor J (1996) Predictive markers of AIDS dementia complex: CD4 cell count and cerebrospinal fluid concentrations of beta 2-microglobulin and neopterin. J Infect Dis 174:294–298

    Article  CAS  PubMed  Google Scholar 

  96. Farhadian SF, Mistry H, Kirchwey T, Chiarella J, Calvi R, Chintanaphol M, Patel P, Landry ML, Robertson K, Spudich SS (2019) Markers of CNS injury in adults living with HIV with CSF HIV not detected vs detected <20 copies/mL. Open Forum Infect Dis 6: ofz528

  97. Pfefferbaum A, Rogosa DA, Rosenbloom MJ, Chu W, Sassoon SA, Kemper CA, Deresinski S, Rohlfing T, Zahr NM, Sullivan EV (2014) Accelerated aging of selective brain structures in human immunodeficiency virus infection: a controlled, longitudinal magnetic resonance imaging study. Neurobiol Aging 35:1755–1768

    Article  PubMed  PubMed Central  Google Scholar 

  98. Jernigan TL, Archibald SL, Fennema-Notestine C, Taylor MJ, Theilmann RJ, Julaton MD, Notestine RJ, Wolfson T, Letendre SL, Ellis RJ, Heaton RK, Gamst AC, Jr Franklin DR, Clifford DB, Collier AC, Gelman BB, Marra C, McArthur JC, McCutchan JA, Morgello S, Simpson DM, Grant I, Group C (2011) Clinical factors related to brain structure in HIV: the CHARTER study. J Neurovirol 17:248–257

    Article  PubMed  PubMed Central  Google Scholar 

  99. Kovacsics CE, Gill AJ, Ambegaokar SS, Gelman BB, Kolson DL (2017) Degradation of heme oxygenase-1 by the immunoproteasome in astrocytes: a potential interferon-gamma-dependent mechanism contributing to HIV neuropathogenesis. Glia 65:1264–1277

    Article  PubMed  PubMed Central  Google Scholar 

  100. Dos Reis RS, Sant S, Keeney H, Wagner MCE, Ayyavoo V (2020) Modeling HIV-1 neuropathogenesis using three-dimensional human brain organoids (hBORGs) with HIV-1 infected microglia. Sci Rep 10:15209

    Article  PubMed  PubMed Central  Google Scholar 

  101. Lucas SB, Wong KT, Nightingale S, Miller RF (2021) HIV-associated CD8 encephalitis: a UK case series and review of histopathologically confirmed cases. Front Neurol 12:628296

    Article  PubMed  PubMed Central  Google Scholar 

  102. Sharma SK, Soneja M (2011) HIV & immune reconstitution inflammatory syndrome (IRIS). Indian J Med Res 134:866–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Huis in ’tVeld D, Sun HY, Hung CC, Colebunders R (2012) The immune reconstitution inflammatory syndrome related to HIV co-infections: a review. Eur J Clin Microbiol Infect Dis 31:919–927

    Article  CAS  Google Scholar 

  104. Gendelman HE (2020) Predictive biomarkers for cognitive decline during progressive HIV infection. EBioMedicine 51:102538

    Article  PubMed  Google Scholar 

  105. Guha D, Mukerji SS, Chettimada S, Misra V, Lorenz DR, Morgello S, Gabuzda D (2019) Cerebrospinal fluid extracellular vesicles and neurofilament light protein as biomarkers of central nervous system injury in HIV-infected patients on antiretroviral therapy. AIDS 33:615–625

    Article  CAS  PubMed  Google Scholar 

  106. Pulliam L, Sun B, Mustapic M, Chawla S, Kapogiannis D (2019) Plasma neuronal exosomes serve as biomarkers of cognitive impairment in HIV infection and Alzheimer’s disease. J Neurovirol 25:702–709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sun B, Dalvi P, Abadjian L, Tang N, Pulliam L (2017) Blood neuron-derived exosomes as biomarkers of cognitive impairment in HIV. AIDS 31:F9–F17

    Article  CAS  PubMed  Google Scholar 

  108. Paudel YN, Shaikh MF, Chakraborti A, Kumari Y, Aledo-Serrano A, Aleksovska K, Alvim MKM, Othman I (2018) HMGB1: a common biomarker and potential target for TBI, neuroinflammation, epilepsy, and cognitive dysfunction. Front Neurosci 12:628

    Article  PubMed  PubMed Central  Google Scholar 

  109. Megra BW, Eugenin EA, Berman JW (2017) The role of shed PrP(c) in the neuropathogenesis of HIV Infection. J Immunol 199:224–232

    Article  CAS  PubMed  Google Scholar 

  110. Roberts TK, Eugenin EA, Morgello S, Clements JE, Zink MC, Berman JW (2010) PrPC, the cellular isoform of the human prion protein, is a novel biomarker of HIV-associated neurocognitive impairment and mediates neuroinflammation. Am J Pathol 177:1848–1860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Seegar TCM, Killingsworth LB, Saha N, Meyer PA, Patra D, Zimmerman B, Janes PW, Rubinstein E, Nikolov DB, Skiniotis G, Kruse AC, Blacklow SC (2017) Structural basis for regulated proteolysis by the alpha-secretase ADAM10. Cell 171(1638–48):e7

    Google Scholar 

  112. de Almeida SM, Ribeiro CE, Rotta I, Piovesan M, Tang B, Vaida F, Raboni SM, Letendre S, Potter M, BatistelaFernandes MS, Ellis RJ, Group HIVNRC (2018) Biomarkers of neuronal injury and amyloid metabolism in the cerebrospinal fluid of patients infected with HIV-1 subtypes B and C. J Neurovirol 24:28–40

    Article  PubMed  Google Scholar 

  113. Ellis RJ, Moore DJ, Sundermann EE, Heaton RK, Mehta S, Hulgan T, Samuels D, Fields JA, Letendre SL (2020) Nucleic acid oxidation is associated with biomarkers of neurodegeneration in CSF in people with HIV. Neurol Neuroimmunol Neuroinflamm 7(6):e902

  114. Velasquez S, Prevedel L, Valdebenito S, Gorska AM, Golovko M, Khan N, Geiger J, Eugenin EA (2020) Circulating levels of ATP is a biomarker of HIV cognitive impairment. EBioMedicine 51:102503

    Article  PubMed  Google Scholar 

  115. Bandera A, Taramasso L, Bozzi G, Muscatello A, Robinson JA, Burdo TH, Gori A (2019) HIV-associated neurocognitive impairment in the modern ART era: are we close to discovering reliable biomarkers in the setting of virological suppression? Front Aging Neurosci 11:187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Weiss JJ, Calvi R, Naganawa M, Toyonaga T, Farhadian SF, Chintanaphol M, Chiarella J, Zheng MQ, Ropchan J, Huang Y, Pietrzak RH, Carson RE, Spudich S (2021) Preliminary in vivo evidence of reduced synaptic density in human immunodeficiency virus (HIV) despite antiretroviral therapy. Clin Infect Dis 73:1404–1411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Gong Y, Chowdhury P, Nagesh PKB, Rahman MA, Zhi K, Yallapu MM, Kumar S (2020) Novel elvitegravir nanoformulation for drug delivery across the blood-brain barrier to achieve HIV-1 suppression in the CNS macrophages. Sci Rep 10:3835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Roy U, Drozd V, Durygin A, Rodriguez J, Barber P, Atluri V, Liu X, Voss TG, Saxena S, Nair M (2018) Characterization of Nanodiamond-based anti-HIV drug Delivery to the Brain. Sci Rep 8:1603

    Article  PubMed  PubMed Central  Google Scholar 

  119. Pausch P, Al-Shayeb B, Bisom-Rapp E, Tsuchida CA, Li Z, Cress BF, Knott GJ, Jacobsen SE, Banfield JF, Doudna JA (2020) CRISPR-CasPhi from huge phages is a hypercompact genome editor. Science 369:333–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Yan WX, Hunnewell P, Alfonse LE, Carte JM, Keston-Smith E, Sothiselvam S, Garrity AJ, Chong S, Makarova KS, Koonin EV, Cheng DR, Scott DA (2019) Functionally diverse type V CRISPR-Cas systems. Science 363:88–91

    Article  CAS  PubMed  Google Scholar 

  121. Kunze C, Borner K, Kienle E, Orschmann T, Rusha E, Schneider M, Radivojkov-Blagojevic M, Drukker M, Desbordes S, Grimm D, Brack-Werner R (2018) Synthetic AAV/CRISPR vectors for blocking HIV-1 expression in persistently infected astrocytes. Glia 66:413–427

    Article  PubMed  Google Scholar 

  122. Dash PK, Kaminski R, Bella R, Su H, Mathews S, Ahooyi TM, Chen C, Mancuso P, Sariyer R, Ferrante P, Donadoni M, Robinson JA, Sillman B, Lin Z, Hilaire JR, Banoub M, Elango M, Gautam N, Mosley RL, Poluektova LY, McMillan J, Bade AN, Gorantla S, Sariyer IK, Burdo TH, Young WB, Amini S, Gordon J, Jacobson JM, Edagwa B, Khalili K, Gendelman HE (2019) Sequential LASER ART and CRISPR Treatments Eliminate HIV-1 in a Subset of Infected Humanized Mice. Nat Commun 10:2753

    Article  PubMed  PubMed Central  Google Scholar 

  123. Gavegnano C, Haile WB, Hurwitz S, Tao S, Jiang Y, Schinazi RF, Tyor WR (2019) Baricitinib reverses HIV-associated neurocognitive disorders in a SCID mouse model and reservoir seeding in vitro. J Neuroinflammation 16:182

    Article  PubMed  PubMed Central  Google Scholar 

  124. Ambrosius B, Gold R, Chan A, Faissner S (2019) Antineuroinflammatory drugs in HIV-associated neurocognitive disorders as potential therapy. Neurol Neuroimmunol Neuroinflamm 6:e551

    Article  PubMed  PubMed Central  Google Scholar 

  125. Cross SA, Cook DR, Chi AW, Vance PJ, Kolson LL, Wong BJ, Jordan-Sciutto KL, Kolson DL (2011) Dimethyl fumarate, an immune modulator and inducer of the antioxidant response, suppresses HIV replication and macrophage-mediated neurotoxicity: a novel candidate for HIV neuroprotection. J Immunol 187:5015–5025

    Article  CAS  PubMed  Google Scholar 

  126. Read SW, DeGrezia M, Ciccone EJ, DerSimonian R, Higgins J, Adelsberger JW, Starling JM, Rehm C, Sereti I (2010) The effect of leflunomide on cycling and activation of T-cells in HIV-1-infected participants. PLoS ONE 5:e11937

    Article  PubMed  PubMed Central  Google Scholar 

  127. Sacktor N, Miyahara S, Evans S, Schifitto G, Cohen B, Haughey N, Drewes JL, Graham D, Zink MC, Anderson C, Nath A, Pardo CA, McCarthy S, Hosey L, Clifford D, team AA (2014) Impact of minocycline on cerebrospinal fluid markers of oxidative stress, neuronal injury, and inflammation in HIV-seropositive individuals with cognitive impairment. J Neurovirol 20:620–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Barber-Axthelm IM, Barber-Axthelm V, Sze KY, Zhen A, Suryawanshi GW, Chen IS, Zack JA, Kitchen SG, Kiem HP, Peterson CW (2021) Stem cell-derived CAR T cells traffic to HIV reservoirs in macaques. JCI Insight 6(1):e141502

  129. Ait-Ammar A, Kula A, Darcis G, Verdikt R, De Wit S, Gautier V, Mallon PWG, Marcello A, Rohr O, Van Lint C (2019) Current status of latency reversing agents facing the heterogeneity of HIV-1 cellular and tissue reservoirs. Front Microbiol 10:3060

    Article  PubMed  Google Scholar 

  130. Eden A, Price RW, Spudich S, Fuchs D, Hagberg L, Gisslen M (2007) Immune activation of the central nervous system is still present after >4 years of effective highly active antiretroviral therapy. J Infect Dis 196:1779–1783

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We express our gratitude to the many individuals who have volunteered to partake in the studies reviewed here. Without their generosity, this work would not be possible.

Funding

LK is supported by NIH training grant 5T32GM136651-02. SS is supported by grants from the NIH including R01MH125737, R01MH125396, R01MH106466, and UM1DA051410.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serena Spudich.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is a contribution to the special issue on: Neuroimmune Interactions in Health and Disease - Guest Editors: David Hafler & Lauren Sansing

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Killingsworth, L., Spudich, S. Neuropathogenesis of HIV-1: insights from across the spectrum of acute through long-term treated infection. Semin Immunopathol 44, 709–724 (2022). https://doi.org/10.1007/s00281-022-00953-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-022-00953-5

Keywords

Navigation