Skip to main content

Advertisement

Log in

Characteristics of differentiated CD8+ and CD4+ T cells present in the human brain

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Immune surveillance of the central nervous system (CNS) by T cells is important to keep CNS-trophic viruses in a latent state, yet our knowledge of the characteristics of CNS-populating T cells is incomplete. We performed a comprehensive, multi-color flow-cytometric analysis of isolated T cells from paired corpus callosum (CC) and peripheral blood (PB) samples of 20 brain donors. Compared to PB, CC T cells, which were mostly located in the perivascular space and sporadically in the parenchyma, were enriched for cells expressing CD8. Both CD4+ and CD8+ T cells in the CC had a late-differentiated phenotype, as indicated by lack of expression of CD27 and CD28. The CC contained high numbers of T cells expressing chemokine receptor CX3CR1 and CXCR3 that allow for homing to inflamed endothelium and tissue, but hardly cells expressing the lymph node-homing receptor CCR7. Despite the late-differentiated phenotype, CC T cells had high expression of the IL-7 receptor α-chain CD127 and did not contain the neurotoxic cytolytic enzymes perforin, granzyme A, and granzyme B. We postulate that CNS T cells make up a population of tissue-adapted differentiated cells, which use CX3CR1 and CXCR3 to home into the perivascular space, use IL-7 for maintenance, and lack immediate cytolytic activity, thereby preventing immunopathology in response to low or non-specific stimuli. The presence of these cells in this tightly regulated environment likely enables a fast response to local threats. Our results will enable future detailed exploration of T-cell subsets in the brain involved in neurological diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Appay V, Dunbar PR, Callan M, Klenerman P, Gillespie GM, Papagno L, Ogg GS, King A, Lechner F, Spina CA, Little S, Havlir DV, Richman DD, Gruener N, Pape G, Waters A, Easterbrook P, Salio M, Cerundolo V, McMichael AJ, Rowland-Jones SL (2002) Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections. Nat Med 8(4):379–385

    Article  PubMed  CAS  Google Scholar 

  2. Appay V, Bosio A, Lokan S, Wiencek Y, Biervert C, Küsters D, Devevre E, Speiser D, Romero P, Rufer N, Leyvraz S (2007) Sensitive gene expression profiling of human T cell subsets reveals parallel post-thymic differentiation for CD4+ and CD8+ lineages. J Immunol 179(11):7406–7414

    PubMed  CAS  Google Scholar 

  3. Ariotti S, Haanen JB, Schumacher TN (2012) Behavior and function of tissue-resident memory T cells. Adv Immunol 114:203–216

    Article  PubMed  CAS  Google Scholar 

  4. Bovenschen N, Quadir R, van den Berg AL, Brenkman AB, Vandenberghe I, Devreese B, Joore J, Kummer JA (2009) Granzyme K displays highly restricted substrate specificity that only partially overlaps with granzyme A. J Biol Chem 284(6):3504–3512

    Article  PubMed  CAS  Google Scholar 

  5. Bradl M, Bauer J, Flügel A, Wekerle H, Lassmann H (2005) Complementary contribution of CD4 and CD8 T lymphocytes to T-cell infiltration of the intact and the degenerative spinal cord. Am J Pathol 166(5):1441–1450

    Article  PubMed  Google Scholar 

  6. Bratke K, Kuepper M, Bade B, Virchow JC Jr, Luttmann W (2005) Differential expression of human granzymes A, B, and K in natural killer cells and during CD8+ T cell differentiation in peripheral blood. Eur J Immunol 35(9):2608–2616

    Article  PubMed  CAS  Google Scholar 

  7. Broux B, Pannemans K, Zhang X, Markovic-Plese S, Broekmans T, Eijnde BO, van Wijmeersch B, Somers V, Geusens P, van der Pol S, van Horssen J, Stinissen P, Hellings N (2012) CX(3)CR1 drives cytotoxic CD4(+)CD28(−) T cells into the brain of multiple sclerosis patients. J Autoimmun 38(1):10–19

    Article  PubMed  CAS  Google Scholar 

  8. Christensen JE, Nansen A, Moos T, Lu B, Gerard C, Christensen JP, Thomsen AR (2004) Efficient T-cell surveillance of the CNS requires expression of the CXC chemokine receptor 3. J Neurosci 24(20):4849–4858

    Article  PubMed  CAS  Google Scholar 

  9. Clifford DB, De Luca A, Simpson DM, Arendt G, Giovannoni G, Nath A (2010) Natalizumab-associated progressive multifocal leukoencephalopathy in patients with multiple sclerosis: lessons from 28 cases. Lancet Neurol 9(4):438–446

    Article  PubMed  CAS  Google Scholar 

  10. de Bree GJ, van Leeuwen EM, Out TA, Jansen HM, Jonkers RE, van Lier RA (2005) Selective accumulation of differentiated CD8+ T cells specific for respiratory viruses in the human lung. J Exp Med 202(10):1433–1442

    Article  PubMed  Google Scholar 

  11. de Graaf MT, Smitt PA, Luitwieler RL, van Velzen C, van den Broek PD, Kraan J, Gratama JW (2011) Central memory CD4+ T cells dominate the normal cerebrospinal fluid. Cytometry B Clin Cytom 80(1):43–50

    PubMed  Google Scholar 

  12. Giuliani F, Goodyer CG, Antel JP, Yong VW (2003) Vulnerability of human neurons to T cell-mediated cytotoxicity. J Immunol 171(1):368–379

    PubMed  CAS  Google Scholar 

  13. Giunti D, Borsellino G, Benelli R, Marchese M, Capello E, Valle MT, Pedemonte E, Noonan D, Albini A, Bernardi G, Mancardi GL, Battistini L, Uccelli A (2003) Phenotypic and functional analysis of T cells homing into the CSF of subjects with inflammatory diseases of the CNS. J Leukoc Biol 73(5):584–590

    Article  PubMed  CAS  Google Scholar 

  14. Haile Y, Simmen KC, Pasichnyk D, Touret N, Simmen T, Lu JQ, Bleackley RC, Giuliani F (2011) Granule-derived granzyme B mediates the vulnerability of human neurons to T cell-induced neurotoxicity. J Immunol 187(9):4861–4872

    Article  PubMed  CAS  Google Scholar 

  15. Hamann D, Baars PA, Rep MH, Hooibrink B, Kerkhof-Garde SR, Klein MR, van Lier RA (1997) Phenotypic and functional separation of memory and effector human CD8+ T cells. J Exp Med 186(9):1407–1418

    Article  PubMed  CAS  Google Scholar 

  16. Harris TH, Banigan EJ, Christian DA, Konradt C, Norose K, Wilson EH, John B, Weninger W, Luster AD, Liu AJ, Hunter CA (2012) Generalized Lévy walks and the role of chemokines in migration of effector CD8+ T cells. Nature 486(7404):545–548

    PubMed  CAS  Google Scholar 

  17. Hawke S, Stevenson PG, Freeman S, Bangham CR (1989) Long-term persistence of activated cytotoxic T lymphocytes after viral infection of the central nervous system. J Exp Med 187(10):1575–1582

    Article  Google Scholar 

  18. Heutinck KM, ten Berge IJ, Hack CE, Hamann J, Rowshani AT (2010) Serine proteases of the human immune system in health and disease. Mol Immunol 47(11–12):1943–1955

    Article  PubMed  CAS  Google Scholar 

  19. Imai T, Hieshima K, Haskell C, Baba M, Nagira M, Nishimura M, Kakizaki M, Takagi S, Nomiyama H, Schall TJ, Yoshie O (1997) Identification and molecular characterization of fractalkine receptor CX3CR1, which mediates both leukocyte migration and adhesion. Cell 91(4):521–530

    Article  PubMed  CAS  Google Scholar 

  20. Khanna KM, Lepisto AJ, Decman V, Hendricks RL (2004) Immune control of herpes simplex virus during latency. Curr Opin Immunol 16(4):463–469

    Article  PubMed  CAS  Google Scholar 

  21. Kivisäkk P, Trebst C, Liu Z, Tucky BH, Sørensen TL, Rudick RA, Mack M, Ransohoff RM (2002) T-cells in the cerebrospinal fluid express a similar repertoire of inflammatory chemokine receptors in the absence or presence of CNS inflammation: implications for CNS trafficking. Clin Exp Immunol 129(3):510–518

    Article  PubMed  Google Scholar 

  22. Kivisäkk P, Mahad DJ, Callahan MK, Trebst C, Tucky B, Wei T, Wu L, Baekkevold ES, Lassmann H, Staugaitis SM, Campbell JJ, Ransohoff RM (2003) Human cerebrospinal fluid central memory CD4+ T cells: evidence for trafficking through choroid plexus and meninges via P-selectin. Proc Natl Acad Sci USA 100(14):8389–8394

    Article  PubMed  Google Scholar 

  23. Klein RS, Lin E, Zhang B, Luster AD, Tollett J, Samuel MA, Engle M, Diamond MS (2005) Neuronal CXCL10 directs CD8+ T-cell recruitment and control of West Nile virus encephalitis. J Virol 79(17):11457–11466

    Article  PubMed  CAS  Google Scholar 

  24. Klonowski KD, Williams KJ, Marzo AL, Blair DA, Lingenheld EG, Lefrançois L (2004) Dynamics of blood-borne CD8 memory T cell migration in vivo. Immunity 20(5):551–562

    Article  PubMed  CAS  Google Scholar 

  25. Knickelbein JE, Khanna KM, Yee MB, Baty CJ, Kinchington PR, Hendricks RL (2008) Noncytotoxic lytic granule-mediated CD8+ T cell inhibition of HSV-I reactivation from neuronal latency. Science 322(5899):268–271

    Article  PubMed  CAS  Google Scholar 

  26. Koch S, Larbi A, Derhovanessian E, Ozcelik D, Naumova E, Pawelec G (2008) Multiparameter flow cytometric analysis of CD4 and CD8 T cell subsets in young and old people. Immun Ageing 5:6

    Article  PubMed  Google Scholar 

  27. Loeffler C, Dietz K, Schleich A, Schlaszus H, Stoll M, Meyermann R, Mittelbronn M (2011) Immune surveillance of the normal human CNS takes place in dependence of the locoregional blood-brain barrier configuration and is mainly performed by CD3(+)/CD8(+) lymphocytes. Neuropathology 31(3):230–238

    Article  PubMed  Google Scholar 

  28. Matzinger P, Kamala T (2011) Tissue-based class control: the other side of tolerance. Nat Rev Immunol 11(3):221–230

    Article  PubMed  CAS  Google Scholar 

  29. Medawar PB (1948) Immunity to homologous grafted skin; the fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye. Br J Exp Pathol 29(1):58–69

    PubMed  CAS  Google Scholar 

  30. Melief J, Koning N, Schuurman KG, van de Garde MD, Smolders J, Hoek RM, van Eijk M, Hamann J, Huitinga I (2012) Phenotyping primary human microglia: tight regulation of LPS responsiveness. Glia 60(10):1506–1517

    Article  PubMed  Google Scholar 

  31. Moench TR, Griffin DE (1984) Immunocytochemical identification and quantitation of the mononuclear cells in the cerebrospinal fluid, meninges, and brain during acute viral meningoencephalitis. J Exp Med 159(1):77–88

    Article  PubMed  CAS  Google Scholar 

  32. Mora JR, von Andrian UH (2006) T-cell homing specificity and plasticity: new concepts and future challenges. Trends Immunol 27(5):235–243

    Article  PubMed  CAS  Google Scholar 

  33. Mueller SN, Gebhardt T, Carbone FR, Heath WR (2013) Memory T cell subsets, migration patterns, and tissue residence. Annu Rev Immunol 31:137–161

    Article  PubMed  CAS  Google Scholar 

  34. Ousman SS, Kubes P (2012) Immune surveillance in the central nervous system. Nat Neurosci 15(8):1096–1101

    Article  PubMed  CAS  Google Scholar 

  35. Piet B, de Bree GJ, Smids-Dierdorp BS, van der Loos CM, Remmerswaal EB, von der Thüsen JH, van Haarst JM, Eerenberg JP, ten Brinke A, van der Bij W, Timens W, van Lier RA, Jonkers RE (2011) CD8+ T cells with an intraepithelial phenotype upregulate cytotoxic function upon influenza infection in human lung. J Clin Invest 121(6):2254–2263

    Article  PubMed  CAS  Google Scholar 

  36. Ransohoff RM, Engelhardt B (2012) The anatomical and cellular basis of immune surveillance in the central nervous system. Nat Rev Immunol 12(9):623–635

    Article  PubMed  CAS  Google Scholar 

  37. Reboldi A, Coisne C, Baumjohann D, Benvenuto F, Bottinelli D, Lira S, Uccelli A, Lanzavecchia A, Engelhardt B, Sallusto F (2009) C–C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE. Nat Immunol 10(5):514–523

    Article  PubMed  CAS  Google Scholar 

  38. Sallusto F, Lenig D, Förster R, Lipp M, Lanzavecchia A (1999) Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401(6754):708–712

    Article  PubMed  CAS  Google Scholar 

  39. Sathaliyawala T, Kubota M, Yudanin N, Turner D, Camp P, Thome JJ, Bickham KL, Lerner H, Goldstein M, Sykes M, Kato T, Farber DL (2013) Distribution and compartmentalization of human circulating and tissue-resident memory T cell subsets. Immunity 38(1):187–197

    Article  PubMed  CAS  Google Scholar 

  40. Shechter R, London A, Schwartz M (2013) Orchestrated leukocyte recruitment to immune-privileged sites: absolute barriers versus educational gates. Nat Rev Immunol 13(3):206–218

    Article  PubMed  CAS  Google Scholar 

  41. Schluns KS, Lefrançois L (2003) Cytokine control of memory T-cell development and survival. Nat Rev Immunol 3(4):269–279

    Article  PubMed  CAS  Google Scholar 

  42. van den Pol AN (2006) Viral infections in the developing and mature brain. Trends Neurosci 29(7):398–406

    Article  PubMed  Google Scholar 

  43. van Leeuwen EM, Remmerswaal EB, Heemskerk MH, ten Berge IJ, van Lier RA (2006) Strong selection of virus-specific cytotoxic CD4+ T-cell clones during primary human cytomegalovirus infection. Blood 108(9):3121–3127

    Article  PubMed  Google Scholar 

  44. van Lier RA, ten Berge IJ, Gamadia LE (2003) Human CD8(+) T-cell differentiation in response to viruses. Nat Rev Immunol 3(12):931–939

    Article  PubMed  Google Scholar 

  45. Wakim LM, Woodward-Davis A, Bevan MJ (2010) Memory T cells persisting within the brain after local infection show functional adaptations to their tissue of residence. Proc Natl Acad Sci USA 107(42):17872–17879

    Article  PubMed  CAS  Google Scholar 

  46. Wang T, Allie R, Conant K, Haughey N, Turchan-Chelowo J, Hahn K, Rosen A, Steiner J, Keswani S, Jones M, Calabresi PA (2006) Granzyme B mediates neurotoxicity through a G-protein-coupled receptor. FASEB J 20(8):1209–1211

    Article  PubMed  CAS  Google Scholar 

  47. Weller RO (1998) Pathology of cerebrospinal fluid and interstitial fluid of the CNS: significance for Alzheimer disease, prion disorders and multiple sclerosis. J Neuropathol Exp Neurol 57(10):885–894

    Article  PubMed  CAS  Google Scholar 

  48. Woodland DL, Kohlmeier JE (2009) Migration, maintenance and recall of memory T cells in peripheral tissues. Nat Rev Immunol 9(3):153–161

    Article  PubMed  CAS  Google Scholar 

  49. Young LH, Klavinskis LS, Oldstone MB, Young JD (1989) In vivo expression of perforin by CD8+ lymphocytes during an acute viral infection. J Exp Med 169(6):2159–2171

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by the Netherlands Institute for Neuroscience. The Netherlands Brain Bank (www.brainbank.nl) is acknowledged for providing the donor material.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Inge Huitinga or Jörg Hamann.

Additional information

I. Huitinga and J. Hamann equally contributed to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1114 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smolders, J., Remmerswaal, E.B.M., Schuurman, K.G. et al. Characteristics of differentiated CD8+ and CD4+ T cells present in the human brain. Acta Neuropathol 126, 525–535 (2013). https://doi.org/10.1007/s00401-013-1155-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-013-1155-0

Keywords

Navigation