Skip to main content

Advertisement

Log in

Cytotoxic mechanisms of doxorubicin at clinically relevant concentrations in breast cancer cells

  • Review Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Doxorubicin (DOX) is a chemotherapeutic agent frequently used for the treatment of a variety of tumor types, such as breast cancer. Despite the long history of DOX, the mechanistic details of its cytotoxic action remain controversial. Rather than one key mechanism of cytotoxic action, DOX is characterized by multiple mechanisms, such as (1) DNA intercalation and adduct formation, (2) topoisomerase II (TopII) poisoning, (3) the generation of free radicals and oxidative stress, and (4) membrane damage through altered sphingolipid metabolism. Many past reviews of DOX cytotoxicity are based on supraclinical concentrations, and several have addressed the concentration dependence of these mechanisms. In addition, most reviews lack a focus on the time dependence of these processes. We aim to update the concentration and time-dependent trends of DOX mechanisms at representative clinical concentrations. Furthermore, attention is placed on DOX behavior in breast cancer cells due to the frequent use of DOX to treat this disease. This review provides insight into the mechanistic pathway(s) of DOX at levels found within patients and establishes the magnitude of effect for each mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

aSMase:

Acid sphingomyelinase

CDK:

Cyclin-dependent kinase

DHE:

Dihydroethidium

DHR:

Dihydrorhodamine 123

DOX:

Doxorubicin

DSB:

Double-stranded break

dsDNA:

Double-stranded DNA

FLT:

3’Deoxy-3’-[18F]fluorothymidine

GCS:

Glucosylceramide synthase

GPx:

Glutathione peroxidase

IM:

Internal membrane

LMP:

Lysosome membrane permeabilization

LPX:

Lipid peroxidation

MDR:

Multidrug resistance

MMP:

Mitochondrial membrane permeability

MPTP:

Mitochondrial permeability transition pore

PUFA:

Polyunsaturated fatty acids

ROS:

Reactive oxygen species

S1P:

Sphingosine-1-phosphate

SK:

Sphingosine kinase

SM:

Sphingomyelin

SMase:

Sphingomyelinase

SOD:

Superoxide dismutase

SR:

Sarcoplasmic reticulum

SSB:

Single-stranded break

TopII:

Topoisomerase II

TNBC:

Triple-negative breast cancer

References

  1. Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L (2004) Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 56(2):185–229

    CAS  PubMed  Google Scholar 

  2. Yang F, Teves SS, Kemp CJ, Henikoff S (2014) Doxorubicin, DNA torsion, and chromatin dynamics. Biochim Biophys Acta (BBA)-Rev Cancer 1845 (1):84–89

  3. Ferreira A, Cunha-Oliveira T, Simões RF, Carvalho FS, Burgeiro A, Nordgren K, Wallace KB, Oliveira PJ (2017) Altered mitochondrial epigenetics associated with subchronic doxorubicin cardiotoxicity. Toxicology 390:63–73

    CAS  PubMed  Google Scholar 

  4. Arcamone F (1981) Doxorubicin: anticancer antibiotics. Academic Press, New York

    Google Scholar 

  5. McGowan JV, Chung R, Maulik A, Piotrowska I, Walker JM, Yellon DM (2017) Anthracycline chemotherapy and cardiotoxicity. Cardiovasc Drugs Ther 31(1):63–75

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Gewirtz D (1999) A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem Pharmacol 57(7):727–741

    CAS  PubMed  Google Scholar 

  7. Carvalho C, Santos RX, Cardoso S, Correia S, Oliveira PJ, Santos MS, Moreira PI (2009) Doxorubicin: the good, the bad and the ugly effect. Curr Med Chem 16(25):3267–3285

    CAS  PubMed  Google Scholar 

  8. van der Zanden SY, Qiao X, Neefjes J (2020) New insights into the activities and toxicities of the old anticancer drug doxorubicin. FEBS J

  9. Thorn CF, Oshiro C, Marsh S, Hernandez-Boussard T, McLeod H, Klein TE, Altman RB (2011) Doxorubicin pathways: pharmacodynamics and adverse effects. Pharmacogenet Genomics 21(7):440

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Varela-López A, Battino M, Navarro-Hortal MD, Giampieri F, Forbes-Hernández TY, Romero-Márquez JM, Collado R, Quiles JL (2019) An update on the mechanisms related to cell death and toxicity of doxorubicin and the protective role of nutrients. Food Chem Toxicol 134:110834

  11. Meredith AM, Dass CR (2016) Increasing role of the cancer chemotherapeutic doxorubicin in cellular metabolism. J Pharm Pharmacol 68(6):729–741

    CAS  PubMed  Google Scholar 

  12. Breast Cancer Facts & Figures 2019-2020 (2019) American Cancer Society, Inc., New York

  13. Waks AG, Winer EP (2019) Breast cancer treatment: a review. JAMA 321(3):288–300

    CAS  PubMed  Google Scholar 

  14. Kontny NE, Würthwein G, Joachim B, Boddy AV, Krischke M, Fuhr U, Thompson PA, Jörger M, Schellens JH, Hempel G (2013) Population pharmacokinetics of doxorubicin: establishment of a NONMEM model for adults and children older than 3 years. Cancer Chemother Pharmacol 71(3):749–763

    CAS  PubMed  Google Scholar 

  15. Wilde S, Jetter A, Rietbrock S, Kasel D, Engert A, Josting A, Klimm B, Hempel G, Reif S, Jaehde U (2007) Population pharmacokinetics of the BEACOPP polychemotherapy regimen in Hodgkin’s lymphoma and its effect on myelotoxicity. Clin Pharmacokinet 46(4):319–333

    CAS  PubMed  Google Scholar 

  16. Andersen A, Holte H, Slørdal L (1999) Pharmacokinetics and metabolism of doxorubicin after short-term infusions in lymphoma patients. Cancer Chemother Pharmacol 44(5):422–426

    CAS  PubMed  Google Scholar 

  17. Frenay M, Milano G, Renee N, Pons D, Khater R, Francois E, Thyss A, Namer M (1989) Pharmacokinetics of weekly low dose doxorubicin. Eur J Cancer Clin Oncol 25(2):191–195

    CAS  PubMed  Google Scholar 

  18. Patel J (1996) Liposomal doxorubicin: Doxil®. J Oncol Pharm Pract 2(4):201–210

    CAS  Google Scholar 

  19. Speth PA, Linssen PC, Holdrinet RS, Haanen C (1987) Plasma and cellular adriamycin concentrations in patients with myeloma treated with ninety-six-hour continuous infusion. Clin Pharmacol Ther 41(6):661–665

    CAS  PubMed  Google Scholar 

  20. Advani R, Fisher GA, Lum BL, Hausdorff J, Halsey J, Litchman M, Sikic BI (2001) A phase I trial of doxorubicin, paclitaxel, and valspodar (PSC 833), a modulator of multidrug resistance. Clin Cancer Res 7(5):1221–1229

    CAS  PubMed  Google Scholar 

  21. Barpe DR, Rosa DD, Froehlich PE (2010) Pharmacokinetic evaluation of doxorubicin plasma levels in normal and overweight patients with breast cancer and simulation of dose adjustment by different indexes of body mass. Eur J Pharm Sci 41(3–4):458–463

    CAS  PubMed  Google Scholar 

  22. Greene RF, Collins JM, Jenkins JF, Speyer JL, Myers CE (1983) Plasma pharmacokinetics of adriamycin and adriamycinol: implications for the design of in vitro experiments and treatment protocols. Can Res 43(7):3417–3421

    CAS  Google Scholar 

  23. Bramwell VH, Morris D, Ernst DS, Hings I, Blackstein M, Venner PM, Ette EI, Harding MW, Waxman A, Demetri GD (2002) Safety and efficacy of the multidrug-resistance inhibitor biricodar (VX-710) with concurrent doxorubicin in patients with anthracycline-resistant advanced soft tissue sarcoma. Clin Cancer Res 8(2):383–393

    CAS  PubMed  Google Scholar 

  24. Bartlett NL, Lum BL, Fisher GA, Brophy NA, Ehsan MN, Halsey J, Sikic BI (1994) Phase I trial of doxorubicin with cyclosporine as a modulator of multidrug resistance. J Clin Oncol 12(4):835–842

    CAS  PubMed  Google Scholar 

  25. Pharmacia & Upjohn Company (2010) Doxorubicin hydrochloride for injection. Pfizer Inc. https://www.accessdata.fda.gov/drugsatfda_docs/label/2010/050467s070lbl.pdf

  26. Hassan M, Ansari J, Spooner D, Hussain S (2010) Chemotherapy for breast cancer. Oncol Rep 24(5):1121–1131

    CAS  PubMed  Google Scholar 

  27. Shi Y, Ye P, Long X (2017) Differential expression profiles of the transcriptome in breast cancer cell lines revealed by next generation sequencing. Cell Physiol Biochem 44(2):804–816

    PubMed  Google Scholar 

  28. Patel KJ, Trédan O, Tannock IF (2013) Distribution of the anticancer drugs doxorubicin, mitoxantrone and topotecan in tumors and normal tissues. Cancer Chemother Pharmacol 72(1):127–138

    CAS  PubMed  Google Scholar 

  29. Rahman A, Carmichael D, Harris M, Roh JK (1986) Comparative pharmacokinetics of free doxorubicin and doxorubicin entrapped in cardiolipin liposomes. Can Res 46(5):2295–2299

    CAS  Google Scholar 

  30. Gabizon A, Shiota R, Papahadjopoulos D (1989) Pharmacokinetics and tissue distribution of doxorubicin encapsulated in stable liposomes with long circulation times. JNCI J Natl Cancer Inst 81(19):1484–1488

  31. Lee YTN, Chan KK, Harris PA (1982) Tissue disposition of doxorubicin in experimental animals. Med Pediatr Oncol 10(3):259–267

    CAS  PubMed  Google Scholar 

  32. Siebel C, Lanvers-Kaminsky C, Würthwein G, Hempel G, Boos J (2020) Bioanalysis of doxorubicin aglycone metabolites in human plasma samples–implications for doxorubicin drug monitoring. Sci Rep 10(1):1–7

    Google Scholar 

  33. Arnold RD, Slack JE, Straubinger RM (2004) Quantification of Doxorubicin and metabolites in rat plasma and small volume tissue samples by liquid chromatography/electrospray tandem mass spectroscopy. J Chromatogr B 808(2):141–152

    CAS  Google Scholar 

  34. van Asperen J, van Tellingen O, Beijnen JH (1998) Determination of doxorubicin and metabolites in murine specimens by high-performance liquid chromatography. J Chromatogr B Biomed Sci Appl 712(1–2):129–143

    PubMed  Google Scholar 

  35. Zeng X, Cai H, Yang J, Qiu H, Cheng Y, Liu M (2019) Pharmacokinetics and cardiotoxicity of doxorubicin and its secondary alcohol metabolite in rats. Biomed Pharmacother 116:108964

  36. Licata S, Saponiero A, Mordente A, Minotti G (2000) Doxorubicin metabolism and toxicity in human myocardium: role of cytoplasmic deglycosidation and carbonyl reduction. Chem Res Toxicol 13(5):414–420

    CAS  PubMed  Google Scholar 

  37. Pippa LF, de Oliveira ML, Rocha A, de Andrade JM, Lanchote VL (2020) Total, renal and hepatic clearances of doxorubicin and formation clearance of doxorubicinol in patients with breast cancer: estimation of doxorubicin hepatic extraction ratio. J Pharmaceut Biomed Anal 185:113231

  38. Stewart D, Grewaal D, Green R, Mikhael N, Goel R, Montpetit V, Redmond M (1993) Concentrations of doxorubicin and its metabolites in human autopsy heart and other tissues. Anticancer Res 13(6A):1945–1952

    CAS  PubMed  Google Scholar 

  39. Edwardson D, Narendrula R, Chewchuk S, Mispel-Beyer K, Mapletoft J, Parissenti A (2015) Role of drug metabolism in the cytotoxicity and clinical efficacy of anthracyclines. Curr Drug Metab 16(6):412–426

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Mross K, Maessen P, Van Der Vijgh W, Gall H, Boven E, Pinedo H (1988) Pharmacokinetics and metabolism of epidoxorubicin and doxorubicin in humans. J Clin Oncol 6(3):517–526

    CAS  PubMed  Google Scholar 

  41. Wenningmann N, Knapp M, Ande A, Vaidya TR, Ait-Oudhia S (2019) Insights into doxorubicin-induced cardiotoxicity: molecular mechanisms, preventive strategies, and early monitoring. Mol Pharmacol 96(2):219–232

    CAS  PubMed  Google Scholar 

  42. Mobaraki M, Faraji A, Zare M, Dolati P, Ataei M, Manshadi HD (2017) Molecular mechanisms of cardiotoxicity: a review on major side-effect of doxorubicin. Indian J Pharm Sci 79(3):335–344

    CAS  Google Scholar 

  43. Zhang Y-W, Shi J, Li Y-J, Wei L (2009) Cardiomyocyte death in doxorubicin-induced cardiotoxicity. Arch Immunol Ther Exp 57(6):435–445

    CAS  Google Scholar 

  44. Ackland SP, Ratain MJ, Vogelzang NJ, Choi KE, Ruane M, Sinkule JA (1989) Pharmacokinetics and pharmacodynamics of long-term continuous-infusion doxorubicin. Clin Pharmacol Ther 45(4):340–347

    CAS  PubMed  Google Scholar 

  45. Brenner DE, Grosh WW, Noone R, Stein R, Greco FA, Hande KR (1984) Human plasma pharmacokinetics of doxorubicin: comparison of bolus and infusional administration. Cancer Treat Symp 3:13

    Google Scholar 

  46. Douedi S, Carson MP (2019) Anthracycline medications (Doxorubicin). StatPearls (internet). StatPearls Publishing, St Petersburg

  47. Liston DR, Davis M (2017) Clinically relevant concentrations of anticancer drugs: a guide for nonclinical studies. Clin Cancer Res 23(14):3489–3498

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Gülden M, Seibert H (2003) In vitro–in vivo extrapolation: estimation of human serum concentrations of chemicals equivalent to cytotoxic concentrations in vitro. Toxicology 189(3):211–222

    PubMed  Google Scholar 

  49. Soutar MPM, Kempthorne L, Annuario E, Luft C, Wray S, Ketteler R, Ludtmann MHR, Plun-Favreau H (2019) FBS/BSA media concentration determines CCCP’s ability to depolarize mitochondria and activate PINK1-PRKN mitophagy. Autophagy 15(11):2002–2011. https://doi.org/10.1080/15548627.2019.1603549

    Article  PubMed  PubMed Central  Google Scholar 

  50. Farrugia A (2010) Concerning chapter 5–Human albumin; in cross-sectional guidelines for therapy with blood components and plasma derivatives. Transfus Med Hemother 36(6):399–407 (Transfus Med Hemother 37(2):98)

  51. Finlay GJ, Baguley BC (2000) Effects of protein binding on the in vitro activity of antitumour acridine derivatives and related anticancer drugs. Cancer Chemother Pharmacol 45(5):417–422

    CAS  PubMed  Google Scholar 

  52. Zhang D, Hop CE, Patilea-Vrana G, Gampa G, Seneviratne HK, Unadkat JD, Kenny JR, Nagapudi K, Di L, Zhou L (2019) Drug concentration asymmetry in tissues and plasma for small molecule-related therapeutic modalities. Drug Metab Dispos 47(10):1122–1135

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Kumar A, Patel S, Bhatkar D, Sarode SC, Sharma NK (2021) A novel method to detect intracellular metabolite alterations in MCF-7 cells by doxorubicin induced cell death. Metabolomics 17(1):1–16

    Google Scholar 

  54. Sakai-Kato K, Saito E, Ishikura K, Kawanishi T (2010) Analysis of intracellular doxorubicin and its metabolites by ultra-high-performance liquid chromatography. J Chromatogr B 878(19):1466–1470

    CAS  Google Scholar 

  55. Wu DC, Ofner CM (2013) Adsorption and degradation of doxorubicin from aqueous solution in polypropylene containers. AAPS PharmSciTech 14(1):74–77

    CAS  PubMed  Google Scholar 

  56. Nanang M, Fuad N, Didik R, Topo S, Panuwun J (2018) Effect of alkaline fluids to blood pH and lactic acid changes on sub maximal physical exercise. In: IOP conference series: earth and environmental science, vol 1. IOP Publishing, p 012049

  57. Kelbert M, Pereira CS, Daronch NA, Cesca K, Michels C, de Oliveira D, Soares HM (2021) Laccase as an efficacious approach to remove anticancer drugs: a study of doxorubicin degradation, kinetic parameters, and toxicity assessment. J Hazardous Mater 409:124520

  58. Guven C, Sevgiler Y, Taskin E (2018) Mitochondrial dysfunction associated with doxorubicin. In: Mitochondrial diseases. IntechOpen, p 323

  59. Hershman DL, McBride RB, Eisenberger A, Tsai WY, Grann VR, Jacobson JS (2008) Doxorubicin, cardiac risk factors, and cardiac toxicity in elderly patients with diffuse B-cell non-Hodgkin’s lymphoma. J Clin Oncol 26(19):3159–3165. https://doi.org/10.1200/jco.2007.14.1242

    Article  CAS  PubMed  Google Scholar 

  60. Kim YA, Cho H, Lee N, Jung SY, Sim SH, Park IH, Lee S, Lee ES, Kim HJ (2018) Doxorubicin-induced heart failure in cancer patients: a cohort study based on the Korean National Health Insurance Database. Cancer Med 7(12):6084–6092

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Singal PK, Iliskovic N (1998) Doxorubicin-induced cardiomyopathy. N Engl J Med 339(13):900–905

    CAS  PubMed  Google Scholar 

  62. Zielinski CC (2003) Treatment choices for second-line chemotherapy of metastatic breast cancer. Breast Cancer Res Treat 81(1):33–36

    Google Scholar 

  63. Sinha B, Chignell C (1979) Binding mode of chemically activated semiquinone free radicals from quinone anticancer agents to DNA. Chem Biol Interact 28(2–3):301–308

    CAS  PubMed  Google Scholar 

  64. Coldwell KE, Cutts SM, Ognibene TJ, Henderson PT, Phillips DR (2008) Detection of Adriamycin-DNA adducts by accelerator mass spectrometry at clinically relevant Adriamycin concentrations. Nucleic Acids Res 36(16):e100

  65. Cutts SM, Swift LP, Rephaeli A, Nudelman A, Phillips DR (2003) Sequence specificity of adriamycin-DNA adducts in human tumor cells1. Mol Cancer Ther 2(7):661–670

    CAS  PubMed  Google Scholar 

  66. Cutts SM, Parsons PG, Sturm RA, Phillips DR (1996) Adriamycin-induced DNA adducts inhibit the DNA interactions of transcription factors and RNA polymerase. J Biol Chem 271(10):5422–5429

    CAS  PubMed  Google Scholar 

  67. Sawyer DB, Peng X, Chen B, Pentassuglia L, Lim CC (2010) Mechanisms of anthracycline cardiac injury: can we identify strategies for cardioprotection? Prog Cardiovasc Dis 53(2):105–113

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Chen B, Zhong L, Roush SF, Pentassuglia L, Peng X, Samaras S, Davidson JM, Sawyer DB, Lim CC (2012) Disruption of a GATA4/Ankrd1 signaling axis in cardiomyocytes leads to sarcomere disarray: implications for anthracycline cardiomyopathy. PloS one 7(4):e35743

  69. Curcio F, Testa G, Liguori I, Papillo M, Flocco V, Panicara V, Galizia G, Della-Morte D, Gargiulo G, Cacciatore F (2020) Sarcopenia and heart failure. Nutrients 12(1):211

    PubMed Central  Google Scholar 

  70. Fornari FA, Randolph JK, Yalowich JC, Ritke MK, Gewirtz DA (1994) Interference by doxorubicin with DNA unwinding in MCF-7 breast tumor cells. Mol Pharmacol 45(4):649–656

    CAS  PubMed  Google Scholar 

  71. Dittmann H, Jusufoska A, Dohmen BM, Smyczek-Gargya B, Fersis N, Pritzkow M, Kehlbach R, Vonthein R, Machulla HJ, Bares R (2009) 3′-Deoxy-3′-[18F] fluorothymidine (FLT) uptake in breast cancer cells as a measure of proliferation after doxorubicin and docetaxel treatment. Nucl Med Biol 36(2):163–169

    CAS  PubMed  Google Scholar 

  72. Czeczuga-Semeniuk E, Wołczyński S, Dabrowska M, Dziecioł J, Anchim T (2004) The effect of doxorubicin and retinoids on proliferation, necrosis and apoptosis in MCF-7 breast cancer cells. Folia Histochem Cytobiol 42(4):221–227

    CAS  PubMed  Google Scholar 

  73. Huwiler A, Kotelevets N, Xin C, Pastukhov O, Pfeilschifter J, Zangemeister-Wittke U (2011) Loss of sphingosine kinase-1 in carcinoma cells increases formation of reactive oxygen species and sensitivity to doxorubicin-induced DNA damage. Br J Pharmacol 162(2):532–543

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Kleiner Y, Bar-Am O, Amit T, Berdichevski A, Liani E, Maor G, Reiter I, Youdim MB, Binah O (2008) TVP1022 and propargylamine protect neonatal rat ventricular myocytes against doxorubicin-induced and serum starvation-induced cardiotoxicity. J Cardiovasc Pharmacol 52(3):268–277

    CAS  PubMed  Google Scholar 

  75. Deweese JE, Osheroff N (2009) The DNA cleavage reaction of topoisomerase II: wolf in sheep’s clothing. Nucleic Acids Res 37(3):738–748

    CAS  PubMed  Google Scholar 

  76. Sobek S, Boege F (2014) DNA topoisomerases in mtDNA maintenance and ageing. Exp Gerontol 56:135–141

    CAS  PubMed  Google Scholar 

  77. Marinello J, Delcuratolo M, Capranico G (2018) Anthracyclines as topoisomerase II poisons: from early studies to new perspectives. Int J Mol Sci 19(11):3480

    PubMed Central  Google Scholar 

  78. Zhang S, Liu X, Bawa-Khalfe T, Lu L-S, Lyu YL, Liu LF, Yeh ET (2012) Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat Med 18(11):1639–1642

    PubMed  Google Scholar 

  79. Dorn GW, Vega RB, Kelly DP (2015) Mitochondrial biogenesis and dynamics in the developing and diseased heart. Genes Dev 29(19):1981–1991

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Fornari Jr FA, Jarvis WD, Grant S, Orr MS, Randolph JK, White FK, Mumaw VR, Lovings ET, Freeman RH, Gewirtz DA (1994) Induction of differentiation and growth arrest associated with nascent (nonoligosomal) DNA fragmentation and reduced c-myc expression in MCF-7 human breast tumor cells after continuous exposure to a sublethal concentration of doxorubicin. Cell Growth Differ (Publication American Association for Cancer Research) 5 (7):723–734

  81. Gomes L, Vessoni A, Menck C (2015) Three-dimensional microenvironment confers enhanced sensitivity to doxorubicin by reducing p53-dependent induction of autophagy. Oncogene 34(42):5329–5340

    CAS  PubMed  Google Scholar 

  82. Kluza J, Marchetti P, Gallego M-A, Lancel S, Fournier C, Loyens A, Beauvillain J-C, Bailly C (2004) Mitochondrial proliferation during apoptosis induced by anticancer agents: effects of doxorubicin and mitoxantrone on cancer and cardiac cells. Oncogene 23(42):7018–7030

    CAS  PubMed  Google Scholar 

  83. Ciszewski WM, Tavecchio M, Dastych J, Curtin NJ (2014) DNA-PK inhibition by NU7441 sensitizes breast cancer cells to ionizing radiation and doxorubicin. Breast Cancer Res Treat 143(1):47–55

    CAS  PubMed  Google Scholar 

  84. Raguz S, Adams C, Masrour N, Rasul S, Papoutsoglou P, Hu Y, Cazzanelli G, Zhou Y, Patel N, Coombes C (2013) Loss of O6-methylguanine-DNA methyltransferase confers collateral sensitivity to carmustine in topoisomerase II-mediated doxorubicin resistant triple negative breast cancer cells. Biochem Pharmacol 85(2):186–196

    CAS  PubMed  Google Scholar 

  85. Figueroa-González G, Pérez-Plasencia C (2017) Strategies for the evaluation of DNA damage and repair mechanisms in cancer. Oncol Lett 13(6):3982–3988

    PubMed  PubMed Central  Google Scholar 

  86. Pilco-Ferreto N, Calaf GM (2016) Influence of doxorubicin on apoptosis and oxidative stress in breast cancer cell lines. Int J Oncol 49(2):753–762

    CAS  PubMed  Google Scholar 

  87. Barrera G (2012) Oxidative stress and lipid peroxidation products in cancer progression and therapy. ISRN Oncol

  88. Berthiaume J, Wallace KB (2007) Adriamycin-induced oxidative mitochondrial cardiotoxicity. Cell Biol Toxicol 23(1):15–25

    CAS  PubMed  Google Scholar 

  89. Halliwell B, Chirico S (1993) Lipid peroxidation: its mechanism, measurement, and significance. Am J Clin Nutr 57(5):715S-725S

    CAS  PubMed  Google Scholar 

  90. Srinivas US, Tan BW, Vellayappan BA, Jeyasekharan AD (2019) ROS and the DNA damage response in cancer. Redox Biol 25:101084

  91. Cooke MS, Evans MD, Dizdaroglu M, Lunec J (2003) Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J 17(10):1195–1214

    CAS  PubMed  Google Scholar 

  92. Monari A, Dumont E (2015) Understanding DNA under oxidative stress and sensitization: the role of molecular modeling. Front Chem 3:43

    PubMed  PubMed Central  Google Scholar 

  93. Finlayson-Pitts B, Pitts Jr J (2000) Chapter 6—Rates and mechanisms of gas-phase reactions in irradiated organic–NOx–air mixtures. In: (Finlayson-Pitts, BJ, Pitts, JN eds) Chemistry of the upper and lower atmosphere, pp 179–263

  94. Lindahl T (2000) Suppression of spontaneous mutagenesis in human cells by DNA base excision–repair. Mutation Res/Rev Mutation Res 462(2–3):129–135

    CAS  Google Scholar 

  95. Aryal B, Rao VA (2016) Deficiency in cardiolipin reduces doxorubicin-induced oxidative stress and mitochondrial damage in human B-lymphocytes. PLoS One 11 (7):e0158376

  96. Octavia Y, Tocchetti CG, Gabrielson KL, Janssens S, Crijns HJ, Moens AL (2012) Doxorubicin-induced cardiomyopathy: from molecular mechanisms to therapeutic strategies. J Mol Cell Cardiol 52(6):1213–1225

    CAS  PubMed  Google Scholar 

  97. Gouazé V, Mirault M-E, Carpentier S, Salvayre R, Levade T, Andrieu-Abadie N (2001) Glutathione peroxidase-1 overexpression prevents ceramide production and partially inhibits apoptosis in doxorubicin-treated human breast carcinoma cells. Mol Pharmacol 60(3):488–496

    PubMed  Google Scholar 

  98. Flórido A, Saraiva N, Cerqueira S, Almeida N, Parsons M, Batinic-Haberle I, Miranda JP, Costa JG, Carrara G, Castro M (2019) The manganese (III) porphyrin MnTnHex-2-PyP5+ modulates intracellular ROS and breast cancer cell migration: Impact on doxorubicin-treated cells. Redox Biol 20:367–378

    PubMed  Google Scholar 

  99. Vijay K, Sowmya PR-R, Arathi BP, Shilpa S, Shwetha HJ, Raju M, Baskaran V, Lakshminarayana R (2018) Low-dose doxorubicin with carotenoids selectively alters redox status and upregulates oxidative stress-mediated apoptosis in breast cancer cells. Food Chem Toxicol 118:675–690

    CAS  PubMed  Google Scholar 

  100. Bernardes JR, Faria CC, Andrade IS, Ferreira ACF, Carvalho DP, Leitão AC, de Alencar TA, Fortunato RS (2018) Effect of the FE2+ chelation by 2, 2′-dipyridyl in the doxorubicin-induced lethality in breast tumor cell lines. Life Sci 192:128–135

    CAS  PubMed  Google Scholar 

  101. Wang S, Konorev EA, Kotamraju S, Joseph J, Kalivendi S, Kalyanaraman B (2004) Doxorubicin induces apoptosis in normal and tumor cells via distinctly different mechanisms intermediacy of H2O2-and p53-dependent pathways. J Biol Chem 279(24):25535–25543

    CAS  PubMed  Google Scholar 

  102. Aydinlik S, Erkisa M, Cevatemre B, Sarimahmut M, Dere E, Ari F, Ulukaya E (2017) Enhanced cytotoxic activity of doxorubicin through the inhibition of autophagy in triple negative breast cancer cell line. Biochim Biophys Acta (BBA) General Subj 1861 (2):49–57

  103. Abdoul-Azize S, Buquet C, Li H, Picquenot J-M, Vannier J-P (2018) Integration of Ca 2+ signaling regulates the breast tumor cell response to simvastatin and doxorubicin. Oncogene 37(36):4979–4993

    CAS  PubMed  Google Scholar 

  104. Kleensang A, Vantangoli MM, Odwin-DaCosta S, Andersen ME, Boekelheide K, Bouhifd M, Fornace AJ, Li H-H, Livi CB, Madnick S (2016) Genetic variability in a frozen batch of MCF-7 cells invisible in routine authentication affecting cell function. Sci Rep 6(1):1–11

    Google Scholar 

  105. Li P, Hou M, Lou F, Björkholm M, Xu D (2012) Telomere dysfunction induced by chemotherapeutic agents and radiation in normal human cells. Int J Biochem Cell Biol 44(9):1531–1540

    CAS  PubMed  Google Scholar 

  106. Wątek M, Piktel E, Barankiewicz J, Sierlecka E, Kościołek-Zgódka S, Chabowska A, Suprewicz Ł, Wolak P, Durnaś B, Bucki R (2019) Decreased activity of blood acid sphingomyelinase in the course of multiple myeloma. Int J Mol Sci 20(23):6048

    PubMed Central  Google Scholar 

  107. Tirodkar T, Voelkel-Johnson C (2012) Sphingolipids in apoptosis. Exp Oncol

  108. Kawase M, Watanabe M, Kondo T, Yabu T, Taguchi Y, Umehara H, Uchiyama T, Mizuno K, Okazaki T (2002) Increase of ceramide in adriamycin-induced HL-60 cell apoptosis: detection by a novel anti-ceramide antibody. Biochim Biophys Acta (BBA) Mol Cell Biol Lipids 1584(2–3):104–114

  109. Pettus BJ, Chalfant CE, Hannun YA (2002) Ceramide in apoptosis: an overview and current perspectives. Biochim Biophys Acta (BBA) Mol Cell Biol Lipids 1585 (2–3):114–125

  110. Jin S, Yi F, Zhang F, Poklis JL, Li P-L (2008) Lysosomal targeting and trafficking of acid sphingomyelinase to lipid raft platforms in coronary endothelial cells. Arterioscler Thromb Vasc Biol 28(11):2056–2062

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Dumitru CA, Carpinteiro A, Trarbach T, Hengge UR, Gulbins E (2007) Doxorubicin enhances TRAIL-induced cell death via ceramide-enriched membrane platforms. Apoptosis 12(8):1533–1541

    CAS  PubMed  Google Scholar 

  112. Zhang X, Wu X, Su P, Gao Y, Meng B, Sun Y, Li L, Zhou Z, Zhou G (2012) Doxorubicin influences the expression of glucosylceramide synthase in invasive ductal breast cancer. PloS one 7 (11):e48492

  113. Serrano-Puebla A, Boya P (2018) Lysosomal membrane permeabilization as a cell death mechanism in cancer cells. Biochem Soc Trans 46(2):207–215

    CAS  PubMed  Google Scholar 

  114. Wang F, Gómez-Sintes R, Boya P (2018) Lysosomal membrane permeabilization and cell death. Traffic 19(12):918–931

    CAS  PubMed  Google Scholar 

  115. Alvi MM, Nicoletto RE, Eshmawi BA, Kim H, Cammarata CR, Ofner CM III (2020) Intracellular trafficking and cytotoxicity of a gelatine–doxorubicin conjugate in two breast cancer cell lines. J Drug Target 28(5):487–499

    CAS  PubMed  Google Scholar 

  116. Nicoletto RE, Ofner CM (2021) Investigating the roles of reactive oxygen species and lysosomes in the cytotoxicity of doxorubicin in breast cancer cells. AACR

  117. Aits S, Jäättelä M (2013) Lysosomal cell death at a glance. The Company of Biologists Ltd, Cambridge

  118. Liu Y-Y, Yu JY, Yin D, Patwardhan GA, Gupta V, Hirabayashi Y, Holleran WM, Giuliano AE, Jazwinski SM, Gouaze-Andersson V (2008) A role for ceramide in driving cancer cell resistance to doxorubicin. FASEB J 22(7):2541–2551

    CAS  PubMed  Google Scholar 

  119. Liu Y-Y, Hill RA, Li Y-T (2013) Ceramide glycosylation catalyzed by glucosylceramide synthase and cancer drug resistance. In: Advances in cancer research, vol 117. Elsevier, New York, pp 59–89

  120. Carroll BL, Bonica J, Shamseddine AA, Hannun YA, Obeid LM (2018) A role for caspase-2 in sphingosine kinase 1 proteolysis in response to doxorubicin in breast cancer cells–implications for the CHK 1-suppressed pathway. FEBS Open Bio 8(1):27–40

    CAS  PubMed  Google Scholar 

  121. Shamseddine A, Clarke C, Carroll B, Airola M, Mohammed S, Rella A, Obeid L, Hannun Y (2015) P53-dependent upregulation of neutral sphingomyelinase-2: role in doxorubicin-induced growth arrest. Cell death & disease 6 (10):e1947

  122. DiPaola RS (2002) To arrest or not to G2-M Cell-cycle arrest: commentary re: AK Tyagi et al., Silibinin strongly synergizes human prostate carcinoma DU145 cells to doxorubicin-induced growth inhibition, G2-M arrest, and apoptosis. Clin Cancer Res 8:3512–3519 (Clin Cancer Res 8(11):3311–3314)

  123. Swift LP, Rephaeli A, Nudelman A, Phillips DR, Cutts SM (2006) Doxorubicin-DNA adducts induce a non-topoisomerase II–mediated form of cell death. Can Res 66(9):4863–4871

    CAS  Google Scholar 

  124. Larsen AK, Skladanowski A, Bojanowski K (1996) The roles of DNA topoisomerase II during the cell cycle. In: Progress in cell cycle research. Springer, New York, pp 229–239

  125. Mancilla T, Davis L, Aune GJ (2020) Doxorubicin-induced p53 interferes with mitophagy in cardiac fibroblasts. PloS one 15 (9):e0238856

  126. Ashour F, Awwad MH, Sharawy HE, Kamal M (2018) Estrogen receptor positive breast tumors resist chemotherapy by the overexpression of P53 in cancer stem cells. J Egypt Natl Cancer Inst 30(2):45–48

    Google Scholar 

  127. Marzec KA, Lin MZ, Martin JL, Baxter RC (2015) Involvement of p53 in insulin-like growth factor binding protein-3 regulation in the breast cancer cell response to DNA damage. Oncotarget 6(29):26583

    PubMed  PubMed Central  Google Scholar 

  128. Liu B, Chen Y, Clair DKS (2008) ROS and p53: a versatile partnership. Free Radical Biol Med 44(8):1529–1535

    CAS  Google Scholar 

  129. Cordani M, Butera G, Pacchiana R, Masetto F, Mullappilly N, Riganti C, Donadelli M (2020) Mutant p53-associated molecular mechanisms of ROS regulation in cancer cells. Biomolecules 10(3):361

    CAS  PubMed Central  Google Scholar 

  130. Swain SM, Whaley FS, Ewer MS (2003) Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer Interdiscip Int J Am Cancer Soc 97 (11):2869–2879

  131. Li J, Wang P-y, Long NA, Zhuang J, Springer DA, Zou J, Lin Y, Bleck CK, Park J-H, Kang J-G (2019) p53 prevents doxorubicin cardiotoxicity independently of its prototypical tumor suppressor activities. Proc Natl Acad Sci 116(39):19626–19634

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Lehenbauer Ludke AR, Al-Shudiefat AA-RS, Dhingra S, Jassal DS, Singal PK (2009) A concise description of cardioprotective strategies in doxorubicin-induced cardiotoxicity. Can J Physiol Pharmacol 87(10):756–763

    CAS  Google Scholar 

  133. Shin SH, Choi YJ, Lee H, Kim H-S, Seo SW (2016) Oxidative stress induced by low-dose doxorubicin promotes the invasiveness of osteosarcoma cell line U2OS in vitro. Tumor Biol 37(2):1591–1598

    CAS  Google Scholar 

  134. Gajewski E, Gaur S, Akman SA, Matsumoto L, van Balgooy JN, Doroshow JH (2007) Oxidative DNA base damage in MCF-10A breast epithelial cells at clinically achievable concentrations of doxorubicin. Biochem Pharmacol 73(12):1947–1956

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Etrych T, Šubr V, Laga R, Říhová B, Ulbrich K (2014) Polymer conjugates of doxorubicin bound through an amide and hydrazone bond: Impact of the carrier structure onto synergistic action in the treatment of solid tumours. Eur J Pharm Sci 58:1–12

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support from the Agnes Varis Trust for Leadership and Women’s Health (REN) and the Milton Lev Memorial Faculty Research Fund (CMO).

Funding

Agnes Varis Trust for Leadership and Women’s Health. Milton Lev Memorial Faculty Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clyde M. Ofner III.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Data availability

Not applicable.

Code availability

Not applicable.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 95 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nicoletto, R.E., Ofner, C.M. Cytotoxic mechanisms of doxorubicin at clinically relevant concentrations in breast cancer cells. Cancer Chemother Pharmacol 89, 285–311 (2022). https://doi.org/10.1007/s00280-022-04400-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-022-04400-y

Keywords

Navigation