Skip to main content

Advertisement

Log in

Antitumor activity of the microtubule inhibitor MBRI-001 against human hepatocellular carcinoma as monotherapy or in combination with sorafenib

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

MBRI-001 is a novel synthetic derivative of plinabulin. In this study, our purpose is to investigate the inhibition effects of MBRI-001 on human hepatocellular carcinoma as monotherapy or in combination with sorafenib.

Methods

HCCLM3 and Bel-7402 cell lines were used for activity evaluation in vitro. The anti-proliferative activity of MBRI-001 was assessed by MTT assay. The morphological change of microtubules was determined by immunofluorescence assay. The cell cycle was measured by flow cytometer. The expression of cyclin B1 (CCNB1) was analyzed by RT-qPCR and western blotting assays. The antitumor activities in vivo were evaluated with human HCC xenograft mice model.

Results

Our data demonstrated that MBRI-001 had better anti-proliferative activities than that of plinabulin against HCCLM3 and Bel-7402 cell lines. MBRI-001 inhibited the formation of microtubules and induced G2/M arrest with the downregulation of CCNB1. In vivo orthotopic mice model demonstrated that MBRI-001 significantly inhibited the growth of HCCLM3 with the apoptosis and necrosis observed in tumor. The combination treatment of MBRI-001 with sorafenib in subcutaneous mice model exhibited a higher antitumor inhibition rate at 72.0%, in comparison with MBRI-001 or sorafenib as monotherapy at 40.7% or 47.7%, respectively.

Conclusion

MBRI-001 had better inhibition effects on microtubules and human hepatocellular carcinoma than that of plinabulin. The combination treatment of MBRI-001 and sorafenib exhibited a higher antitumor effect, which could provide a new strategy to treat HCC in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Akhmanova A, Steinmetz MO (2015) Control of microtubule organization and dynamics: two ends in the limelight. Nat Rev Mol Cell Biol 16(12):711–726. https://doi.org/10.1038/nrm4084

    Article  CAS  PubMed  Google Scholar 

  2. Wang Y, Yu Y, Li GB, Li SA, Wu C, Gigant B, Qin W, Chen H, Wu Y, Chen Q, Yang J (2017) Mechanism of microtubule stabilization by taccalonolide AJ. Nat Commun 8:1–8. https://doi.org/10.1038/ncomms15787

    Article  CAS  Google Scholar 

  3. Chen J, Sun WL, Wasylyk B, Wang YP, Zheng H (2012) c-Jun N-terminal kinase mediates microtubule-depolymerizing agent-induced microtubule depolymerization and G2/M arrest in MCF-7 breast cancer cells. Anticancer Drugs 23(1):98–107. https://doi.org/10.1097/CAD.0b013e32834bc978

    Article  CAS  PubMed  Google Scholar 

  4. Wei RJ, Lin SS, Wu WR, Chen LR, Li CF, Chen HD, Chou CT, Chen YC, Liang SS, Chien ST, Shiue YL (2016) A microtubule inhibitor, ABT-751, induces autophagy and delays apoptosis in Huh-7 cells. Toxicol Appl Pharmacol 311:88–98. https://doi.org/10.1016/j.taap.2016.09.021

    Article  CAS  PubMed  Google Scholar 

  5. Kingston DG, Snyder JP (2014) The quest for a simple bioactive analog of paclitaxel as a potential anticancer agent. Acc Chem Res 47(8):2682–2691. https://doi.org/10.1021/ar500203h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rutkauskiene G, Labanauskas L (2005) Treatment of patients of high-risk group of medulloblastoma with the adjuvant lomustine, cisplatin, and vincristine chemotherapy. Medicina (Kauas) 41(12):1026–1034

    Google Scholar 

  7. Nicholson B, Lloyd GK, Miller BR, Palladino MA, Kiso Y, Hayashi Y, Neuteboom ST (2006) NPI-2358 is a tubulin-depolymerizing agent: in-vitro evidence for activity as a tumor vascular-disrupting agent. Anticancer Drugs 17(1):25–31

    Article  CAS  PubMed  Google Scholar 

  8. Honda-Uezono A, Kaida A, Michi Y, Harada K, Hayashi Y, Hayashi Y, Miura (2012) Unusual expression of red fluorescence at M phase induced by anti-microtubule agents in HeLa cells expressing the fluorescent ubiquitination-based cell cycle indicator (Fucci). Biochem Biophys Res Commun 428(2):224–229. https://doi.org/10.1016/j.bbrc.2012.10.014

    Article  CAS  PubMed  Google Scholar 

  9. Bertelsen LB, Shen YY, Nielsen T, Stodkilde-Jorgensen H, Lloyd GK, Siemann DW, Horsman MR (2011) Vascular effects of plinabulin (NPI-2358) and the influence on tumour response when given alone or combined with radiation. Int J Radiat Biol 87(11):1126–1134. https://doi.org/10.3109/09553002.2011.605418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Singh AV, Bandi M, Raje N, Richardson P, Palladino MA, Chauhan D, Anderson KC (2011) A novel vascular disrupting agent plinabulin triggers JNK-mediated apoptosis and inhibits angiogenesis in multiple myeloma cells. Blood 117(21):5692–5700. https://doi.org/10.1182/blood-2010-12-323857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ding Z, Cheng H, Wang S, Hou Y, Zhao J, Guan H, Li W (2017) Development of MBRI-001, a deuterium-substituted plinabulin derivative as a potent anti-cancer agent. Bioorg Med Chem Lett 27:1416–1419. https://doi.org/10.1016/j.bmcl.2017.01.096

    Article  CAS  PubMed  Google Scholar 

  12. El-Serag HB (2012) Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology 142(6):1264–1273. https://doi.org/10.1053/j.gastro.2011.12.061

    Article  PubMed  PubMed Central  Google Scholar 

  13. Xiao J, Lv Y, Jin F, Liu Y, Ma Y, Xiong Y, Liu L, Zhang S, Sun Y, Tipoe GL, Hong A, Xing F, Wang X (2017) LncRNA HANR promotes tumorigenesis and increase of chemoresistance in hepatocellular carcinoma. Cell Physiol Biochem 43(5):1926–1938. https://doi.org/10.1159/000484116

    Article  CAS  PubMed  Google Scholar 

  14. Alsaied OA, Sangwan V, Banerjee S, Krosch TC, Chugh R, Saluja A, Vickers SM, Jensen EH (2014) Sorafenib and triptolide as combination therapy for hepatocellular carcinoma. Surgery 156(2):270–279. https://doi.org/10.1016/j.surg.2014.04.055

    Article  PubMed  Google Scholar 

  15. Liang Y, Chen J, Yu Q, Ji T, Zhang B, Xu J, Dai Y, Xie Y, Lin H, Liang X, Cai X (2017) Phosphorylated ERK is a potential prognostic biomarker for Sorafenib response in hepatocellular carcinoma. Cancer Med. https://doi.org/10.1002/cam4.1228

    Google Scholar 

  16. Villanueva A, LIovet JM (2011) Targeted therapies for hepatocellular carcinoma. Gastroenterology 140:1410–1426. https://doi.org/10.1053/j.gastro.2011.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wu FX, Chen J, Bai T, Zhu SL, Yang TB, Qi LN, Zou L, Li ZH, Ye JZ, Li LQ (2017) The safety and efficacy of transarterial chemoembolization combined with sorafenib and sorafenib mono-therapy in patients with BCLC stage B/C hepatocellular carcinoma. BMC Cancer 17(1):645–656. https://doi.org/10.1186/s12885-017-3545-5

    Article  PubMed  PubMed Central  Google Scholar 

  18. Petrini I, Lencioni M, Ricasoli M, Iannopollo M, Orlandini C, Oliveri F, Bartolozzi C, Ricci S (2012) Phase II trial of sorafenib in combination with 5-fluorouracil infusion in advanced hepatocellular carcinoma. Cancer Chemother Pharmacol 69(3):773–780. https://doi.org/10.1007/s00280-011-1753-2

    Article  CAS  PubMed  Google Scholar 

  19. Wild AT, Gandhi N, Chettiar ST, Aziz K, Gajula RP, Williams RD, Kumar R, Taparra K, Zeng J, Cades JA, Velarde E, Menon S, Geschwind JF, Cosgrove D, Pawlik TM, Maitra A, Wong J, Hales RK, Torbenson MS, Herman JM, Tran PT (2013) Concurrent versus sequential sorafenib therapy in combination with radiation for hepatocellular carcinoma. PLoS One 8(6):e65726. https://doi.org/10.1371/journal.pone.0065726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xuan ZX, Li LN, Zhang Q, Xu CW, Dang DX, Yuan Y, An YH, Wang SS, Li XW, Yuan SJ (2014) Fully human VEGFR2 monoclonal antibody BC001 attenuates tumor angiogenesis and inhibits tumor growth. Int J Oncol 45(6):2411–2420. https://doi.org/10.3892/ijo.2014.2690

    Article  CAS  PubMed  Google Scholar 

  21. Checchi PM, Nettles JH, Zhou J, Snyder JP, Joshi HC (2003) Microtubule-interacting drugs for cancer treatment. Trends Pharmacol Sci 24(7):361–365. https://doi.org/10.1016/S0165-6147(03)00161-5

    Article  CAS  PubMed  Google Scholar 

  22. Stefański T, Mikstacka R, Kurczab R, Dutkiewicz Z, Kucińska M, Murias M, Zielińska-Przyjemska M, Cichocki M, Teubert A, Kaczmarek M, Hogendorf A, Sobiak S (2018) Design, synthesis, and biological evaluation of novel combretastatin A-4 thio derivatives as microtubule targeting agents. Eur J Med Chem 144:797–816. https://doi.org/10.1016/j.ejmech.2017.11.050

    Article  PubMed  Google Scholar 

  23. Fanale D, Bronte G, Passiglia F, Calò V, Castiglia M, Piazza FD, Barraco N, Cangemi A, Catarella MT, Insalaco L, Listì A, Maragliano R, Massihnia D, Perez A, Toia F, Cicero G, Bazan V (2015) Stabilizing versus destabilizing the microtubules: a double-edge sword for an effective cancer treatment option?. Anal Cell Pathol 2015:1–19. https://doi.org/10.1155/2015/690916

    Article  Google Scholar 

  24. Timmins GS (2014) Deuterated drugs: where are we now? Expert Opin Ther Pat 24(10):1067–1075. https://doi.org/10.1517/13543776.2014.943184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wassmann K, Benezra R (2001) Mitotic checkpoints: from yeast to cancer. Curr Opin Genet Dev 11(1):83–90. https://doi.org/10.1016/S0959-437X(00)00161-1

    Article  CAS  PubMed  Google Scholar 

  26. Woods CM, Zhu J, McQueney PA, Bollag D, Lazarides E (1995) Taxol-induced mitotic block triggers rapid onset of a p53-independent apoptotic pathway. Mol Med 1(5):506–526

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Li QQ, Hsu I, Sanford T, Railkar R, Balaji N, Sourbier C, Vocke C, Balaji KC, Agarwal PK (2017) Protein kinase D inhibitor CRT0066101 suppresses bladder cancer growth in vitro and xenografts via blockade of the cell cycle at G2/M. Cell Mol Life Sci. https://doi.org/10.1007/s00018-017-2681-z

    PubMed Central  Google Scholar 

  28. Yu CY, Jerry Teng CL, Hung PS, Cheng CC, Hsu SL, Hwang GY, Tzeng YM (2017) Ovatodiolide isolated from Anisomeles indica induces cell cycle G2/M arrest and apoptosis via a ROS-dependent ATM/ATR signaling pathways. Eur J Pharmacol. https://doi.org/10.1016/j.ejphar.2017.09.050

    Google Scholar 

  29. Cao H, Phan H, Yang LX (2012) Improved chemotherapy for hepatocellular carcinoma. Anticancer Res 32(4):1379–1386

    CAS  PubMed  Google Scholar 

  30. Chen MC, Huang HH, Lai CY, Lin YJ, Liou JP, Lai MJ, Li YH, Teng CM, Yang CR (2015) Novel histone deacetylase inhibitor MPT0G009 induces cell apoptosis and synergistic anticancer activity with tumor necrosis factor-related apoptosis-inducing ligand against human hepatocellular carcinoma. Oncotarget 7(1):402–417. https://doi.org/10.18632/oncotarget.6352

    PubMed Central  Google Scholar 

Download references

Funding

This study was funded by “Zhufeng Scholar Program” of Ocean University of China (841412016), “Major Projects of Independent Innovation” of Qingdao (15-4-13-zdzx-hy), “Outstanding Talents Plan” of Qingdao (15-10-3-15-(34)-zch), Aoshan Talents Cultivation Program of Qingdao National Laboratory for Marine Science and Technology (No.2017ASTCP-OS08) to Dr. Wenbao Li, National Natural Science Foundation of China (NSFC 81472687 and 81773761) to Dr. Linna Li, and youth special fund for PhD of Qingdao (No.16-5-1-62-jch) to Dr. Jianchun Zhao.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shoujun Yuan or Wenbao Li.

Ethics declarations

Conflict of interest

All authors declare that there is no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, M., Li, L., Zhao, J. et al. Antitumor activity of the microtubule inhibitor MBRI-001 against human hepatocellular carcinoma as monotherapy or in combination with sorafenib. Cancer Chemother Pharmacol 81, 853–862 (2018). https://doi.org/10.1007/s00280-018-3547-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-018-3547-2

Keywords

Navigation