Skip to main content

Advertisement

Log in

Determinants of the activities of antifolates delivered into cells by folate-receptor-mediated endocytosis

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Elements in the endocytic process that are determinants of the activities of antifolates delivered by folate-receptor alpha (FRα) were explored.

Methods

Antifolate growth inhibition was assessed with a 1- or 5-day exposure in reduced folate carrier-null HeLa cell lines that express a high level of FRα in the presence or absence of the proton-coupled folate transporter (PCFT). pH-dependent rates of dissociation from FRα were also determined.

Results

With a 1-day drug exposure which is relevant to the pulse clinical administration of these drugs, FRα expression enhanced raltitrexed activity and modestly enhanced ZD9331 activity, but did not significantly augment the activity of pemetrexed or lomotrexol. With a 5-day drug exposure, FRα-mediated growth inhibition was increased for raltitrexed and ZD9331 and emerged for lomotrexol. While the FRα-augmented activity of lomotrexol and raltitrexed did not require PCFT, augmentation of ZD9331 activity required the co-expression of PCFT with both 1- and 5-day exposures. In contrast, there was no augmentation of pemetrexed activity by FRα under any condition. The activities of these agents correlated with their rate of dissociation from the receptor at acidic pH: raltitrexed > ZD9331 > lomotrexol > pemetrexed consistent with insufficient pemetrexed release from FRα for export from the endosomes.

Conclusions

FRα is unlikely to contribute to the pharmacological activity of antifolates, such as pemetrexed, that bind tightly to, and dissociate slowly from, the receptor particularly when the exposure time is brief. While PCFT was required for FRα-mediated ZD9931 activity, the activities of the other antifolates was independent of PCFT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

PCFT:

Proton-coupled folate transporter

RFC:

Reduced folate carrier

FR:

Folate receptor

GARFT:

Glycinamide ribonucleotide formyltransferase

5-CHO-THF:

5-Formyltetrahydrofolate

DAVLBH:

Desacetylvinblastine monohydrazide

HBS:

HEPES-buffered saline

MBS:

MES-buffered saline

References

  1. Zhao R, Diop-Bove N, Visentin M, Goldman ID (2011) Mechanisms of membrane transport of folates into cells and across epithelia. Annu Rev Nutr 31:177–201

    Article  CAS  PubMed  Google Scholar 

  2. Desmoulin SK, Hou Z, Gangjee A, Matherly LH (2012) The human proton-coupled folate transporter: biology and therapeutic applications to cancer. Cancer Biol Ther 13:1355–1373

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Visentin M, Diop-Bove N, Zhao R, Goldman ID (2014) The intestinal absorption of folates. Annu Rev Physiol 76:251–274

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Zhao R, Goldman ID (2013) Folate and thiamine transporters mediated by facilitative carriers (SLC19A1-3 and SLC46A1) and folate receptors. Mol Aspects Med 34:373–385

    Article  PubMed  Google Scholar 

  5. Kamen BA, Smith AK (2004) A review of folate receptor alpha cycling and 5-methyltetrahydrofolate accumulation with an emphasis on cell models in vitro. Adv Drug Deliv Rev 56:1085–1097

    Article  CAS  PubMed  Google Scholar 

  6. Elnakat H, Ratnam M (2004) Distribution, functionality and gene regulation of folate receptor isoforms: implications in targeted therapy. Adv Drug Deliv Rev 56:1067–1084

    Article  CAS  PubMed  Google Scholar 

  7. Parker N, Turk MJ, Westrick E, Lewis JD, Low PS, Leamon CP (2005) Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay. Anal Biochem 338:284–293

    Article  CAS  PubMed  Google Scholar 

  8. Gibbs DD, Theti DS, Wood N, Green M, Raynaud F, Valenti M, Forster MD, Mitchell F, Bavetsias V, Henderson E, Jackman AL (2005) BGC 945, a novel tumor-selective thymidylate synthase inhibitor targeted to alpha-folate receptor-overexpressing tumors. Cancer Res 65:11721–11728

    Article  CAS  PubMed  Google Scholar 

  9. Wang L, Cherian C, Desmoulin SK, Polin L, Deng Y, Wu J, Hou Z, White K, Kushner J, Matherly LH, Gangjee A (2010) Synthesis and antitumor activity of a novel series of 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl antifolate inhibitors of purine biosynthesis with selectivity for high affinity folate receptors and the proton-coupled folate transporter over the reduced folate carrier for cellular entry. J Med Chem 53:1306–1318

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Wang L, Desmoulin SK, Cherian C, Polin L, White K, Kushner J, Fulterer A, Chang MH, Mitchell-Ryan S, Stout M, Romero MF, Hou Z, Matherly LH, Gangjee A (2011) Synthesis, biological, and antitumor activity of a highly potent 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl antifolate inhibitor with proton-coupled folate transporter and folate receptor selectivity over the reduced folate carrier that inhibits beta-glycinamide ribonucleotide formyltransferase. J Med Chem 54:7150–7164

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Wang Y, Cherian C, Orr S, Mitchell-Ryan S, Hou Z, Raghavan S, Matherly LH, Gangjee A (2013) Tumor-targeting with novel non-benzoyl 6-substituted straight chain pyrrolo[2,3-d]pyrimidine antifolates via cellular uptake by folate receptor alpha and inhibition of de novo purine nucleotide biosynthesis. J Med Chem 56:8684–8695

    Article  CAS  PubMed  Google Scholar 

  12. Qiu A, Jansen M, Sakaris A, Min SH, Chattopadhyay S, Tsai E, Sandoval C, Zhao R, Akabas MH, Goldman ID (2006) Identification of an intestinal folate transporter and the molecular basis for hereditary folate malabsorption. Cell 127:917–928

    Article  CAS  PubMed  Google Scholar 

  13. Zhao R, Min SH, Qiu A, Sakaris A, Goldberg GL, Sandoval C, Malatack JJ, Rosenblatt DS, Goldman ID (2007) The spectrum of mutations in the PCFT gene, coding for an intestinal folate transporter, that are the basis for hereditary folate malabsorption. Blood 110:1147–1152

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Diop-Bove N, Kronn D, Goldman ID (2014) Hereditary folate malabsorption. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, Bird TD, Dolan CR, Fong CT, Smith RJH, Stephens K (eds) GeneReviews [Internet]. Unverisity of Washington, Seattle, Seattle

    Google Scholar 

  15. Cario H, Bode H, Debatin KM, Opladen T, Schwarz K (2009) Congenital null mutations of the FOLR1 gene: a progressive neurologic disease and its treatment. Neurology 73:2127–2129

    Article  CAS  PubMed  Google Scholar 

  16. Steinfeld R, Grapp M, Kraetzner R, Dreha-Kulaczewski S, Helms G, Dechent P, Wevers R, Grosso S, Gartner J (2009) Folate receptor alpha defect causes cerebral folate transport deficiency: a treatable neurodegenerative disorder associated with disturbed myelin metabolism. Am J Hum Genet 85:354–363

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Grapp M, Just IA, Linnankivi T, Wolf P, Lucke T, Hausler M, Gartner J, Steinfeld R (2012) Molecular characterization of folate receptor 1 mutations delineates cerebral folate transport deficiency. Brain 135:2022–2031

    Article  CAS  PubMed  Google Scholar 

  18. Zhao R, Min SH, Wang Y, Campanella E, Low PS, Goldman ID (2009) A role for the proton-coupled folate transporter (PCFT—SLC46A1) in folate receptor-mediated endocytosis. J Biol Chem 284:4267–4274

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Xia W, Low PS (2010) Folate-targeted therapies for cancer. J Med Chem 53:6811–6824

    Article  CAS  PubMed  Google Scholar 

  20. Vlahov IR, Santhapuram HK, Kleindl PJ, Howard SJ, Stanford KM, Leamon CP (2006) Design and regioselective synthesis of a new generation of targeted chemotherapeutics. Part 1: EC145, a folic acid conjugate of desacetylvinblastine monohydrazide. Bioorg Med Chem Lett 16:5093–5096

    Article  CAS  PubMed  Google Scholar 

  21. Naumann RW, Coleman RL, Burger RA, Sausville EA, Kutarska E, Ghamande SA, Gabrail NY, Depasquale SE, Nowara E, Gilbert L, Gersh RH, Teneriello MG, Harb WA, Konstantinopoulos PA, Penson RT, Symanowski JT, Lovejoy CD, Leamon CP, Morgenstern DE, Messmann RA (2013) PRECEDENT: a randomized phase II trial comparing vintafolide (EC145) and pegylated liposomal doxorubicin (PLD) in combination versus PLD alone in patients with platinum-resistant ovarian cancer. J Clin Oncol 31:4400–4406

    Article  CAS  PubMed  Google Scholar 

  22. Dhawan D, Ramos-Vara JA, Naughton JF, Cheng L, Low PS, Rothenbuhler R, Leamon CP, Parker N, Klein PJ, Vlahov IR, Reddy JA, Koch M, Murphy L, Fourez LM, Stewart JC, Knapp DW (2013) Targeting folate receptors to treat invasive urinary bladder cancer. Cancer Res 73:875–884

    Article  CAS  PubMed  Google Scholar 

  23. Zhao R, Diop-Bove N, Goldman ID (2014) Enhanced receptor-mediated endocytosis and cytotoxicity of a folic acid-desacetylvinblastine monohydrazide conjugate in a pemetrexed-resistant cell line lacking folate-specific facilitative carriers but with increased folate receptor expression. Mol Pharmacol 85:310–321

    Article  PubMed Central  PubMed  Google Scholar 

  24. Zhao R, Gao F, Hanscom M, Goldman ID (2004) A prominent low-PH methotrexate transport activity in human solid tumor cells: contribution to the preservation of methotrexate pharmacological activity in HeLa cells lacking the reduced folate carrier. Clin Cancer Res 10:718–727

    Article  CAS  PubMed  Google Scholar 

  25. Zhao R, Chattopadhyay S, Hanscom M, Goldman ID (2004) Antifolate resistance in a HeLa cell line associated with impaired transport independent of the reduced folate carrier. Clin Cancer Res 10:8735–8742

    Article  CAS  PubMed  Google Scholar 

  26. Diop-Bove NK, Wu J, Zhao R, Locker J, Goldman ID (2009) Hypermethylation of the human proton-coupled folate transporter (SLC46A1) minimal transcriptional regulatory region in an antifolate-resistant HeLa cell line. Mol Cancer Ther 8:2424–2431

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Westerhof GR, Schornagel JH, Kathmann I, Jackman AL, Rosowsky A, Forsch RA, Hynes JB, Boyle FT, Peters GJ, Pinedo HM, Jansen G (1995) Carrier- and receptor-mediated transport of folate antagonists targeting folate-dependent enzymes: correlates of molecular- structure and biological activity. Mol Pharmacol 48:459–471

    CAS  PubMed  Google Scholar 

  28. Theti DS, Jackman AL (2004) The role of alpha-folate receptor-mediated transport in the antitumor activity of antifolate drugs. Clin Cancer Res 10:1080–1089

    Article  CAS  PubMed  Google Scholar 

  29. Zhao R, Gao F, Goldman ID (2001) Marked suppression of the activity of some, but not all, antifolate compounds by augmentation of folate cofactor pools within tumor cells. Biochem Pharmacol 61:857–865

    Article  CAS  PubMed  Google Scholar 

  30. Jackman AL, Kimbell R, Aherne GW, Brunton L, Jansen G, Stephens TC, Smith MN, Wardleworth JM, Boyle FT (1997) Cellular pharmacology and in vivo activity of a new anticancer agent, ZD9331: a water-soluble, nonpolyglutamatable, quinazoline-based inhibitor of thymidylate synthase. Clin Cancer Res 3:911–921

    CAS  PubMed  Google Scholar 

  31. Zhao R, Hanscom M, Chattopadhyay S, Goldman ID (2004) Selective preservation of pemetrexed pharmacological activity in HeLa cells lacking the reduced folate carrier; association with the presence of a secondary transport pathway. Cancer Res 64:3313–3319

    Article  CAS  PubMed  Google Scholar 

  32. Chattopadhyay S, Zhao R, Krupenko SA, Krupenko N, Goldman ID (2006) The inverse relationship between reduced folate carrier function and pemetrexed activity in a human colon cancer cell line. Mol Cancer Ther 5:438–449

    Article  CAS  PubMed  Google Scholar 

  33. Andreassi JL, Moran RG (2002) Mouse folylpoly-gamma-glutamate synthetase isoforms respond differently to feedback inhibition by folylpolyglutamate cofactors. Biochemistry 41:226–235

    Article  CAS  PubMed  Google Scholar 

  34. Vogelzang NJ, Rusthoven JJ, Symanowski J, Denham C, Kaukel E, Ruffie P, Gatzemeier U, Boyer M, Emri S, Manegold C, Niyikiza C, Paoletti P (2003) Phase III study of pemetrexed in combination with cisplatin versus cisplatin alone in patients with malignant pleural mesothelioma. J Clin Oncol 21:2636–2644

    Article  CAS  PubMed  Google Scholar 

  35. Hanna N, Shepherd FA, Fossella FV, Pereira JR, De Marinis F, Von Pawel J, Gatzemeier U, Tsao TC, Pless M, Muller T, Lim HL, Desch C, Szondy K, Gervais R, Shaharyar Manegold C, Paul S, Paoletti P, Einhorn L, Bunn PA Jr (2004) Randomized phase III trial of pemetrexed versus docetaxel in patients with non-small-cell lung cancer previously treated with chemotherapy. J Clin Oncol 22:1589–1597

    Article  CAS  PubMed  Google Scholar 

  36. Scagliotti GV, Parikh P, Von Pawel J, Biesma B, Vansteenkiste J, Manegold C, Serwatowski P, Gatzemeier U, Digumarti R, Zukin M, Lee JS, Mellemgaard A, Park K, Patil S, Rolski J, Goksel T, De Marinis F, Simms L, Sugarman KP, Gandara D (2008) Phase III study comparing cisplatin plus gemcitabine with cisplatin plus pemetrexed in chemotherapy-naive patients with advanced-stage non-small-cell lung cancer. J Clin Oncol 26:3543–3551

    Article  CAS  PubMed  Google Scholar 

  37. Bueno R, Appasani K, Mercer H, Lester S, Sugarbaker D (2001) The alpha folate receptor is highly activated in malignant pleural mesothelioma. J Thorac Cardiovasc Surg 121:225–233

    Article  CAS  PubMed  Google Scholar 

  38. Christoph DC, Asuncion BR, Hassan B, Tran C, Maltzman JD, O’Shannessy DJ, Wynes MW, Gauler TC, Wohlschlaeger J, Hoiczyk M, Schuler M, Eberhardt WE, Hirsch FR (2013) Significance of folate receptor alpha and thymidylate synthase protein expression in patients with non-small-cell lung cancer treated with pemetrexed. J Thorac Oncol 8:19–30

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Nunez MI, Behrens C, Woods DM, Lin H, Suraokar M, Kadara H, Hofstetter W, Kalhor N, Lee JJ, Franklin W, Stewart DJ, Wistuba II (2012) High expression of folate receptor alpha in lung cancer correlates with adenocarcinoma histology and EGFR [corrected] mutation. J Thorac Oncol 7:833–840

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Leamon CP, You F, Santhapuram HK, Fan M, Vlahov IR (2009) Properties influencing the relative binding affinity of pteroate derivatives and drug conjugates thereof to the folate receptor. Pharm Res 26:1315–1323

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Institutes of Health (CA-82621 and CA-013330).

Conflict of interest

No conflict to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongbao Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, R., Visentin, M. & Goldman, I.D. Determinants of the activities of antifolates delivered into cells by folate-receptor-mediated endocytosis. Cancer Chemother Pharmacol 75, 1163–1173 (2015). https://doi.org/10.1007/s00280-015-2733-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-015-2733-8

Keywords

Navigation