Skip to main content
Log in

Properties Influencing the Relative Binding Affinity of Pteroate Derivatives and Drug Conjugates Thereof to the Folate Receptor

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Using in vitro competition assays, determine salient chemical features of pteroates and pteroate-drug conjugates which afford high affinity to the folate receptor.

Materials and Methods

Both folate binding protein-coated polystyrene plates and adherent human cell-based assays were used to evaluate the effects of assay temperature and buffer composition on pteroate/pteroate-drug conjugate binding affinity. Following assay selection and optimization, the relative binding affinities of ten vitamers and derivatives as well as seven pteroate-drug conjugates were evaluated.

Results

Compared to polystyrene plates containing immobilized folate binding protein, adherent KB cells were determined to be an equally effective, more desirable source of folate receptor for such analyses. Using the latter method, we discovered that a charged group positioned in close proximity to the pteroate’s aryl moiety is critical for retaining high binding affinity. We also found that a diverse set of bioactive small molecule agents can be attached to folic acid in a manner that does not appreciably disturb this vitamin’s intrinsic high affinity for the folate receptor. However, conjugation of lipophilic, high protein-binding agents to folate was sometimes found to dramatically reduce affinity, which is a finding that best exemplifies the need for having a reliable in vitro assay for determining a compound’s RA.

Conclusion

Molecules which bind best to the human folate receptor are those that contain hydrophilic regions distal to the ligand’s aryl group, and for drug conjugates, an extended hydrophilic spacer placed in-between the pteroate and drug cargo moieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. C. P. Leamon, and P. S. Low. Delivery of macromolecules into living cells: a method that exploits folate receptor endocytosis. Proc. Natl. Acad. Sci., USA. 88:5572–5576 (1991) doi:10.1073/pnas.88.13.5572.

    Article  PubMed  CAS  Google Scholar 

  2. C. P. Leamon, and P. S. Low. Membrane folate-binding proteins are responsible for folate- protein conjugate endocytosis into cultured cells. Biochem. J. 291:855–860 (1993).

    PubMed  CAS  Google Scholar 

  3. I. G. Campbell, T. A. Jones, W. D. Foulkes, and J. Trowsdale. Folate-binding protein is a marker for ovarian cancer. Cancer Res. 51:5329–5338 (1991).

    PubMed  CAS  Google Scholar 

  4. C. P. Leamon, and J. A. Reddy. Folate-targeted chemotherapy. Adv. Drug Deliv. Rev. 56:1127–1141 (2004) doi:10.1016/j.addr.2004.01.008.

    Article  PubMed  CAS  Google Scholar 

  5. J. A. Reddy, R. Dorton, E. Westrick, A. Dawson, T. Smith, L. C. Xu, M. Vetzel, P. Kleindl, I. R. Vlahov, and C. P. Leamon. Preclinical evaluation of EC145, a folate-Vinca alkaloid conjugate. Cancer Res. 67:4434–4442 (2007) doi:10.1158/0008-5472.CAN-07-0033.

    Article  PubMed  CAS  Google Scholar 

  6. C. P. Leamon, J. A. Reddy, I. R. Vlahov, E. Westrick, A. Dawson, R. Dorton, M. Vetzel, H. K. Santhapuram, and Y. Wang. Preclinical antitumor activity of a novel folate-targeted dual drug conjugate. Mol. Pharm. 4:659–667 (2007) doi:10.1021/mp070049c.

    Article  PubMed  CAS  Google Scholar 

  7. P. S. Low, and A. C. Antony. Folate receptor-targeted drugs for cancer and inflammatory diseases. Adv. Drug Deliv. Rev. 56:1055–1238 (2004) doi:10.1016/j.addr.2004.02.003.

    Article  PubMed  CAS  Google Scholar 

  8. L. Xu, I. R. Vlahov, C. P. Leamon, H. K. R. Santhapuram, and C. H. Li. Synthesis, purification, and uses of pteroic acid and derivatives and conjugates thereof. Patent application number PCT/US2006/009153, filed March 14, 2006 (2005).

  9. C. P. Leamon, M. A. Parker, I. R. Vlahov, L. C. Xu, J. A. Reddy, M. Vetzel, and N. Douglas. Synthesis and biological evaluation of EC20: a new folate-derived 99mTc-based radiopharmaceutical. Bioconjug. Chem. 13:1200–1210 (2002) doi:10.1021/bc0200430.

    Article  PubMed  CAS  Google Scholar 

  10. Y. Lu, and P. S. Low. Folate targeting of haptens to cancer cell surfaces mediates immunotherapy of syngeneic murine tumors. Cancer Immunol. Immunother. 51:153–162 (2002) doi:10.1007/s00262-002-0266-6.

    Article  PubMed  CAS  Google Scholar 

  11. C. P. Leamon, J. A. Reddy, I. R. Vlahov, M. Vetzel, N. Parker, J. S. Nicoson, L. C. Xu, and E. Westrick. Synthesis and biological evaluation of EC72: a new folate-targeted chemotherapeutic. Bioconjug. Chem. 16:803–811 (2005) doi:10.1021/bc049709b.

    Article  PubMed  CAS  Google Scholar 

  12. C. P. Leamon, J. A. Reddy, I. R. Vlahov, P. J. Kleindl, M. Vetzel, and E. Westrick. Synthesis and biological evaluation of EC140: a novel folate-targeted Vinca alkaloid conjugate. Bioconjug. Chem. 17:1226–1232 (2006) doi:10.1021/bc060145g.

    Article  PubMed  CAS  Google Scholar 

  13. I. R. Vlahov, H. K. Santhapuram, P. J. Kleindl, S. J. Howard, K. M. Stanford, and C. P. Leamon. Design and regioselective synthesis of a new generation of targeted chemotherapeutics. Part 1: EC145, a folic acid conjugate of desacetylvinblastine monohydrazide. Bioorg. Med. Chem. Lett. 16:5093–5096 (2006) doi:10.1016/j.bmcl.2006.07.030.

    Article  PubMed  CAS  Google Scholar 

  14. T. R. Jones, A. H. Calvert, A. L. Jackman, S. J. Brown, M. Jones, and K. R. Harrap. A potent antitumour quinazoline inhibitor of thymidylate synthetase: synthesis, biological properties and therapeutic results in mice. Eur. J. Cancer. 17:11–19 (1981) doi:10.1016/0014-2964(81)90206-1.

    PubMed  CAS  Google Scholar 

  15. T. R. Jones, M. J. Smithers, R. F. Betteridge, M. A. Taylor, A. L. Jackman, A. H. Calvert, L. C. Davies, and K. R. Harrap. Quinazoline antifolates inhibiting thymidylate synthase: variation of the amino acid. J. Med. Chem. 29:1114–1118 (1986) doi:10.1021/jm00156a033.

    Article  PubMed  CAS  Google Scholar 

  16. G. R. Westerhof, J. H. Schornagel, I. Kathmann, A. L. Jackman, A. Rosowsky, R. A. Forsch, J. B. Hynes, F. T. Boyle, G. J. Peters, H. M. Pinedo, and G. Jansen. Carrier- and receptor-mediated transport of folate antagonists targeting folate-dependent enzymes: correlates of molecular structure and biological activity. Mol. Pharm. 48:459–471 (1995).

    CAS  Google Scholar 

  17. C. P. Leamon, J. A. Reddy, I. R. Vlahov, E. Westrick, N. Parker, J. S. Nicoson, and M. Vetzel. Comparative preclinical activity of the folate-targeted Vinca alkaloid conjugates EC140 and EC145. Int. J. Cancer. 121:1585–1592 (2007) doi:10.1002/ijc.22853.

    Article  PubMed  CAS  Google Scholar 

  18. M. McHugh, and Y. C. Cheng. Demonstration of a high affinity folate binder in human cell membranes and its characterization in cultured human KB cells. J. Biol. Chem. 254:11312–11318 (1979).

    PubMed  CAS  Google Scholar 

  19. B. A. Kamen, and A. Capdevila. Receptor-mediated folate accumulation is regulated by the cellular folate content. Proc. Natl. Acad. Sci. U. S. A. 83:5983–5987 (1986) doi:10.1073/pnas.83.16.5983.

    Article  PubMed  CAS  Google Scholar 

  20. A. C. Antony, M. A. Kane, R. M. Portillo, P. C. Elwood, and J. F. Kolhouse. Studies of the role of a particulate folate-binding protein in the uptake of 5-methyltetrahydrofolate by cultured human KB cells. JBC. 260:14911–14917 (1985).

    CAS  Google Scholar 

  21. C. P. Leamon, R. B. DePrince, and R. W. Hendren. Folate-mediated drug delivery: effect of alternative conjugation chemistry. J. Drug Target. 7:157–169 (1999).

    Article  PubMed  CAS  Google Scholar 

  22. E. Sadasivan, and S. P. Rothenberg. The complete amino acid sequence of a human folate binding protein from KB cells determined from the cDNA. J. Biol. Chem. 264:5806–5811 (1989).

    PubMed  CAS  Google Scholar 

  23. G. R. Westerhof, S. Rijnboutt, J. H. Schornagel, H. M. Pinedo, G. J. Peters, and G. Jansen. Functional activity of the reduced folate carrier in KB, MA104, and IGROV-I cells expressing folate-binding protein. Cancer Res. 55:3795–3802 (1995).

    PubMed  CAS  Google Scholar 

  24. T. P. McAlinden, J. B. Hynes, S. A. Patil, G. R. Westerhof, G. Jansen, J. H. Schornagel, S. S. Kerwar, and J. H. Freisheim. Synthesis and biological evaluation of a fluorescent analogue of folic acid. Biochemistry. 30:5674–5681 (1991) doi:10.1021/bi00237a006.

    Article  PubMed  CAS  Google Scholar 

  25. G. R. Westerhof, G. Jansen, T. P. McAlinden, J. H. Schornagel, J. B. Hynes, and J. H. Freisheim. A photoaffinity analogue of folic acid as a probe for the identification and function of a membrane folate binding protein (mFBP) in human CCRF-CEM leukemia cells. Proc. Am. Assoc. Cancer Res. 32:328 (1991).

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank Marilynn Vetzel for providing the numerous plates of adherent KB cells throughout this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher P. Leamon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leamon, C.P., You, F., Santhapuram, H.K. et al. Properties Influencing the Relative Binding Affinity of Pteroate Derivatives and Drug Conjugates Thereof to the Folate Receptor. Pharm Res 26, 1315–1323 (2009). https://doi.org/10.1007/s11095-009-9840-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-009-9840-3

KEY WORDS

Navigation