Skip to main content

Advertisement

Log in

Bone marrow microvessel density and plasma angiogenic factors in myeloproliferative neoplasms: clinicopathological and molecular correlations

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Increased angiogenesis in BCR-ABL1 negative myeloproliferative neoplasms (MPNs) has been recognized, but its connection with clinical and molecular markers needs to be defined. The aims of study were to (1) assess bone marrow (BM) angiogenesis measured by microvessel density (MVD) using CD34 and CD105 antibodies; (2) analyze correlation of MVD with plasma angiogenic factors including vascular endothelial growth factor, basic fibroblast growth factor, and interleukin-8; (3) examine the association of MVD with clinicopathological and molecular markers. We examined 90 de novo MPN patients (30 polycythemia vera (PV), primary myelofibrosis (PMF), essential thrombocythemia (ET)) and 10 age-matched controls. MVD was analyzed by immunohistochemistry “hot spot” method, angiogenic factors by immunoassay and JAK2V617F, and CALR mutations by DNA sequencing and allelic PCR. MVD was significantly increased in MPNs compared to controls (PMF > PV > ET). Correlation between MVD and plasma angiogenic factors was found in MPNs. MVD was significantly increased in patients with JAK2V617F mutation and correlated with JAK2 mutant allele burden (CD34-MVD: ρ = 0.491, p < 0.001; CD105-MVD: ρ = 0.276, p = 0.02) but not with CALR mutation. MVD correlated with leukocyte count, serum lactate dehydrogenase, hepatomegaly, and splenomegaly. BM fibrosis was significantly associated with CD34-MVD, CD105-MVD, interleukin-8, and JAK2 mutant allele burden. JAK2 homozygote status had positive predictive value (100%) for BM fibrosis. Patients with prefibrotic PMF had significantly higher MVD than patients with ET, and we could recommend MVD to be additional histopathological marker to distinguish these two entities. This study also highlights the strong correlation of MVD with plasma angiogenic factors, JAK2 mutant allele burden, and BM fibrosis in MPNs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Skoda RC, Duek A, Grisouard J (2015) Pathogenesis of myeloproliferative neoplasms. Exp Hematol 43:599–608

    Article  CAS  PubMed  Google Scholar 

  2. Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR et al (2005) A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 352:1779–1790

    Article  CAS  PubMed  Google Scholar 

  3. Pardanani AD, Levine RL, Lasho T, Pikman Y, Mesa RA, Wadleigh M et al (2006) MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood 108:3472–3476

    Article  CAS  PubMed  Google Scholar 

  4. Klampfl T, Gisslinger H, Harutyunyan AS, Nivarthi H, Rumi E, Milosevic JD et al (2013) Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med 369:2379–2390

    Article  CAS  PubMed  Google Scholar 

  5. Roskoski R Jr (2007) Vascular endothelial growth factor (VEGF) signaling in tumor progression. Crit Rev Oncol Hematol 62(3):179–213

    Article  PubMed  Google Scholar 

  6. Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1:27–31

    Article  CAS  PubMed  Google Scholar 

  7. Rajkumar SV, Mesa RA, Fonseca R, Schroeder G, Plevak MF, Dispenzieri A et al (2002) Bone marrow angiogenesis in 400 patients with monoclonal gammopathy of undetermined significance, multiple myeloma, and primary amyloidosis. Clin Cancer Res 8:2210–2216

    PubMed  Google Scholar 

  8. Padro T, Ruiz S, Bieker R, Bürger H, Steins M, Kienast J et al (2000) Increased angiogenesis in the bone marrow of patients with acute myeloid leukemia. Blood 95:2637–2644

    CAS  PubMed  Google Scholar 

  9. Aguayo A, Armillas-Canseco FM, Martínez-Baños D (2011) Antiangiogenesis in myelodysplastic syndrome. Curr Cancer Drug Targets 11(9):1044–1052

    Article  CAS  PubMed  Google Scholar 

  10. Paesler J, Gehrke I, Poll-Wolbeck SJ, Kreuzer KA (2012) Targeting the vascular endothelial growth factor in hematologic malignancies. Eur J Haematol 89(5):373–384

    Article  CAS  PubMed  Google Scholar 

  11. Boveri E, Passamonti F, Rumi E, Pietra D, Elena C, Arcaini L et al (2008) Bone marrow microvessel density in chronic myeloproliferative disorders: a study of 115 patients with clinicopathological and molecular correlations. Br J Haematol 140(2):162–168

    PubMed  Google Scholar 

  12. Kvasnicka HM, Thiele J (2004) Bone marrow angiogenesis: methods of quantification and changes evolving in chronic myeloproliferative disorders. Histol Histopathol 19(4):1245–1260

    CAS  PubMed  Google Scholar 

  13. Gianelli U, Vener C, Raviele PR, Savi F, Somalvico F, Calori R et al (2007) VEGF expression correlates with microvessel density in Philadelphia chromosome negative chronic myeloproliferative disorders. Am J Clin Pathol 128:966–973

    Article  PubMed  Google Scholar 

  14. Musolino C, Calabro L, Bellomo G, Martello F, Loteta B, Pezzano C et al (2002) Soluble angiogenic factors: implications for chronic myeloproliferative disorders. Am J Hematol 69(3):159–163

    Article  CAS  PubMed  Google Scholar 

  15. Bauerle KT, Schweppe RE, Lund G, Kotnis G, Deep G, Agarwal R et al (2013) Nuclear factor κB-dependent regulation of angiogenesis, and metastasis in an in vivo model of thyroid cancer is associated with secreted interleukin-8. Leukemia 27(8):1697–1706

    Article  Google Scholar 

  16. Swerdlow S, Campo E, Harris N, Jaffe E, Pileri S, Stein H et al (2008) WHO classification of tumors of haematopoietic and lymphoid tissues. IARC press, Lyon

    Google Scholar 

  17. Panteli K, Zagorianakou N, Bai M, Katsaraki A, Agnantis NJ, Bourantas K (2004) Angiogenesis in chronic myeloproliferative diseases detected by CD34 expression. Eur J Haematol 72(6):410–415

    Article  CAS  PubMed  Google Scholar 

  18. Lippert E, Boissinot M, Kralovics R, Girodon F, Dobo I, Praloran V et al (2006) The JAK2-V617F mutation is frequently present at diagnosis in patients with essential thrombocythemia and polycythemia vera. Blood 108(6):1865–1867

    Article  CAS  PubMed  Google Scholar 

  19. Furtado LV, Weigelin HC, Elenitoba-Johnson KS, Betz BL (2013) Detection of MPL mutations by a novel allele-specific PCR-based strategy. J Mol Diagn 15(6):810–818

    Article  CAS  PubMed  Google Scholar 

  20. Ponzoni M, Savage DG, Ferreri AJ, Pruneri G, Viale G, Servida P et al (2004) Chronic idiopathic myelofibrosis: independent prognostic importance of bone marrow microvascular density evaluated by CD105 (endoglin) immunostaining. Mod Pathol 17(12):1513–1520

    Article  PubMed  Google Scholar 

  21. Medinger M, Skoda R, Gratwohl A, Theocharides A, Buser A, Heim D et al (2009) Angiogenesis and vascular endothelial growth factor−/receptor expression in myeloproliferative neoplasms: correlation with clinical parameters and JAK2-V617F mutational status. Br J Haematol 146(2):150–157

    Article  CAS  PubMed  Google Scholar 

  22. Boiocchi L, Vener C, Savi F, Bonoldi E, Moro A, Fracchiolla NS et al (2011) Increased expression of vascular endothelial growth factor receptor 1 correlates with VEGF and microvessel density in Philadelphia chromosome-negative myeloproliferative neoplasms. J Clin Pathol 64(3):226–231

    Article  CAS  PubMed  Google Scholar 

  23. Panteli K, Bai M, Hatzimichael E, Zagorianakou N, Agnantis NJ, Bourantas K (2007 Dec) Serum levels, and bone marrow immunohistochemical expression of, vascular endothelial growth factor in patients with chronic myeloproliferative diseases. Hematology 12(6):481–486

    Article  CAS  PubMed  Google Scholar 

  24. Bock O, Schlue J, Lehmann U, von Wasielewski R, Langer F, Kreipe H (2002) Megakaryocytes from chronic myeloproliferative disorders show enhanced nuclear bFGF expression. Blood 100:2274–2275

    Article  CAS  PubMed  Google Scholar 

  25. Tefferi A, Vaidya R, Caramazza D, Lasho T, Pardanani A (2011) Circulating interleukin (IL)- 8, IL-2R, IL-12, and IL-15 levels are independently prognostic in primary myelofibrosis: a comprehensive cytokine profiling study. J Clin Oncol 29:1356–1363

    Article  CAS  PubMed  Google Scholar 

  26. Murphy P, Ahmed N, Hassan HT (2002) Increased serum levels of vascular endothelial growth factor correlate with splenomegaly in polycythemia vera. Leuk Res 26(11):1007–1010

    Article  CAS  PubMed  Google Scholar 

  27. Di Raimondo F, Azzaro MP, Palumbo GA, Bagnato S, Stagno F, Giustolisi GM et al (2001) Elevated vascular endothelial growth factor (VEGF) serum levels in idiopathic myelofibrosis. Leukemia 15:976–980

    Article  CAS  PubMed  Google Scholar 

  28. Martyré MC, Le Bousse-Kerdiles MC, Romquin N, Chevillard S, Praloran V, Demory JL et al (1997) Elevated levels of basic fibroblast growth factor in megakaryocytes and platelets from patients with idiopathic myelofibrosis. Br J Haematol 97:441–448

    Article  PubMed  Google Scholar 

  29. Mesa RA, Hanson CA, Rajkumar SV, Schroeder G, Tefferi A (2000) Evaluation and clinical correlations of bone marrow angiogenesis in myelofibrosis with myeloid metaplasia. Blood 96(10):3374–3380

    CAS  PubMed  Google Scholar 

  30. Ni H, Barosi G, Hoffman R (2006) Quantitative evaluation of bone marrow angiogenesis in idiopathic myelofibrosis. Am J Clin Pathol 126:241–247

    Article  PubMed  Google Scholar 

  31. Steurer M, Zoller H, Augustin F, Fong D, Heiss S, Strasser-Weippl K et al (2007) Increased angiogenesis in chronic idiopathic myelofibrosis: vascular endothelial growth factor as a prominent angiogenic factor. Hum Pathol 38:1057–1064

    Article  CAS  PubMed  Google Scholar 

  32. Barbui T, Thiele J, Passamonti F, Rumi E, Boveri E, Ruggeri M et al (2011) Survival and disease progression in essential thrombocythemia are significantly influenced by accurate morphologic diagnosis: an international study. J Clin Oncol 29(23):3179–3184

    Article  PubMed  Google Scholar 

  33. Deng YQ, Zhao H, Ma AL, Zhou JY, Xie SB, Zhang XQ et al (2015) Selected cytokines serve as potential biomarkers for predicting liver inflammation and fibrosis in chronic hepatitis B patients with normal to mildly elevated aminotransferases. Medicine (Baltimore) 94(45):e2003. doi:10.1097/MD.0000000000002003

    Article  CAS  Google Scholar 

  34. Lee JS, Shin JH, Choi BS (2015) Serum levels of IL-8 and ICAM-1 as biomarkers for progressive massive fibrosis in coal workers’ pneumoconiosis. J Korean Med Sci 30(2):140–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hermouet S, Godard A, Pineau D et al (2002) Abnormal production of interleukin (IL)-11 and IL-8 in polycythaemia vera. Cytokine 20:178–183

    Article  CAS  PubMed  Google Scholar 

  36. Kvasnicka HM, Beham-Schmid C, Bob R, Dirnhofer S, Hussein K, Kreipe H et al (2016) Problems and pitfalls in grading of bone marrow fibrosis, collagen deposition and osteosclerosis - a consensus-based study. Histopathology 68(6):905–915

    Article  PubMed  Google Scholar 

  37. Lopes FC, Traina F, Almeida CB, Leonardo FC, Franco-Penteado CF, Garrido VT (2015) Key endothelial cell angiogenic mechanisms are stimulated by the circulating milieu in sickle cell disease and attenuated by hydroxyurea. Haematologica 100(6):730–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from Ministry of education, science, and technological development of the Republic of Serbia (175053) and Swiss National Science Foundation through Joint research project (SCOPES) IZ73Z0_152420/1. We are grateful to pathologists Maja Perunicic-Jovanovic, Tatjana Terzic, and Ljubomir Jakovic who have done histolopathological analysis and evaluation of bone marrow fibrosis.

Author contribution

Danijela Lekovic, Mirjana Gotic, Radek Skoda, and Vladan Cokic designed the study, performed the research, analyzed data and wrote manuscript. Bojana Cokic- Beleslin, Olivera Mitrovic-Ajtic, Dijana Sefer, Tijana Suboticki, Dragana Markovic, Marijana Buac, Milos Diklic, and Ronny Nienhold performed research. Natasa Milic performed statistical analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danijela Lekovic.

Ethics declarations

Informed consent

Informed consent was obtained from all patients for being included in the study.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Supplemental Table 1.

List of antibodies used for analyzing microvessel density (DOCX 11 kb)

Supplemental table 2.

The following primers were used for allelic PCR (DOCX 11 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lekovic, D., Gotic, M., Skoda, R. et al. Bone marrow microvessel density and plasma angiogenic factors in myeloproliferative neoplasms: clinicopathological and molecular correlations. Ann Hematol 96, 393–404 (2017). https://doi.org/10.1007/s00277-016-2890-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-016-2890-9

Keywords

Navigation