Skip to main content

Advertisement

Log in

Development and growth of the calcaneal tendon sheath with special reference to its topographical relationship with the tendon of the plantaris muscle: a histological study of human fetuses

  • Original Article
  • Published:
Surgical and Radiologic Anatomy Aims and scope Submit manuscript

Abstract

Background and purpose

The calcaneal tendon sheath has several vascular routes and is a common site of inflammation. In adults, it is associated with the plantaris muscle tendon, but there are individual variations in the architecture and insertion site. We describe changes of the tendon sheath during fetal development.

Materials and methods

Histological sections of the unilateral ankles of 20 fetuses were examined, ten at 8–12 weeks gestational age (GA) and twelve at 26–39 weeks GA.

Results

At 8–12 weeks GA, the tendon sheath simply consisted of a multilaminar layer that involved the plantaris tendon. At 26–39 weeks, each calcaneal tendon had a multilaminar sheath that could be roughly divided into three layers. The innermost layer was attached to the tendon and sometimes contained the plantaris tendon; the multilaminar intermediate layer contained vessels and often contained the plantaris tendon; and the outermost layer was thick and joined other fascial structures, such as a tibial nerve sheath and subcutaneous plantar fascia. The intermediate layer merged with the outermost layer near the insertion to the calcaneus.

Conclusion

In spite of significant variations among adults, the fetal plantar tendon was always contained in an innermost or intermediate layer of the calcaneal tendon sheath in near-term fetuses. After birth, mechanical stresses such as walking might lead to fusion or separation of the multilaminar sheath in various manners. When reconstruction occurs postnatally, there may be individual variations in blood supply routes and morphology of the distal end of the plantaris tendon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data used in this work are available for verification upon request.

References

  1. Benjamin M, Kaiser E, Milz S (2008) Structure-function relationships in tendons: a review. J Anat 212:211–228. https://doi.org/10.1111/j.1469-7580.2008.00864.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Biz C, Cerchiaro M, Belluzzi E, Bragazzi NL, De Guttry G, Ruggieri P (2021) Long term clinical-functional and ultrasound outcomes in recreational athletes after Achilles tendon rupture: Ma and Griffith versus Tenolig. Medicina (Kaunas) 57:1073. https://doi.org/10.3390/medicina57101073

    Article  PubMed  Google Scholar 

  3. Cho KH, Jang HS, Abe H, Yamamoto M, Murakami G, Shibata S (2018) Fetal development of fasciae around the arm and thigh muscles: a study using late-stage fetuses. Anat Rec 301:1235–1243. https://doi.org/10.1002/ar.23804

    Article  CAS  Google Scholar 

  4. Cho KH, Jin ZW, Abe H, Wilting J, Murakami G, Rodríguez-Vázquez JF (2018) Tensor fasciae latae muscle in human fetuses with special reference to its contribution onto development of the iliotibial tract. Folia Morphol (Warsz) 77:703–710. https://doi.org/10.5603/FM.a2018.0015

    Article  CAS  PubMed  Google Scholar 

  5. Cummins JA, Anson JB, Carr WB (1946) The structure of the calcaneal tendon [of Achilles] in relation to orthopedic surgery with additional observations on the plantaris muscle. Surg Gynecol Obstet 83:107–110

    CAS  PubMed  Google Scholar 

  6. Daseler EH (1943) The plantaris muscle: an anatomical study of 750 specimens. J Bone Joint Surg 25:822–827

    Google Scholar 

  7. Jin ZW, Jin Y, Yamamoto M, Abe H, Murakami G, Yan TF (2016) Oblique cord (chorda obliqua) of the forearm and muscle-associated fibrous tissues at and around the elbow joint: a study using human fetal specimens. Folia Morphol (Warsz) 75:493–502. https://doi.org/10.5603/FM.a2016.0019

    Article  CAS  PubMed  Google Scholar 

  8. Jin ZW, Shibata S, Abe H, Jin Y, Li XW, Murakami G (2017) A new insight into the fabella at knee: the foetal development and evolution. Folia Morphol (Warsz) 76:87–93. https://doi.org/10.5603/FM.a2016.0048

    Article  CAS  PubMed  Google Scholar 

  9. Jin ZW, Kim JH, Suzuki D, Sugai N, Murakami G, Abe H, Rodríguez-Vázquez JF, Kim JH (2021) Relationship of the fabella with the origins of the plantaris and gastrocnemius lateral head muscles in late-term fetuses: a histological study. Anat Cell Biol 54:270–279. https://doi.org/10.5115/acb.20.326

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kannus P, Jozsa L (1991) Histopathological changes preceding spontaneous rupture of a tendon. A controlled study of 891 patients. J Bone Joint Surg Am 73:1507–1525

    Article  CAS  PubMed  Google Scholar 

  11. Knobloch K, Kraemer R, Lichtenberg A, Jagodzinski M, Gossling T, Richter M, Zeichen J, Hufner T, Krettek C (2006) Achilles tendon and paratendon microcirculation in midportion and insertional tendinopathy in athletes. Am J Sports Med 34:92–97. https://doi.org/10.1177/0363546505278705

    Article  PubMed  Google Scholar 

  12. Li HY, Hua YH (2016) Achilles tendinopathy: current concepts about the basic science and clinical treatment. Biomed Res Int 2016:6492597. https://doi.org/10.1155/2016/6492597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. O’Brien M (2005) The anatomy of the Achilles tendon. Foot Ankle Clin 10:225–238. https://doi.org/10.1016/j.fcl.2005.01.011

    Article  PubMed  Google Scholar 

  14. Olewnik Ł, Wysiadecki G, Polguj M, Topol M (2017) Anatomic study suggests that the morphology of the plantaris tendon may be related to Achilles tendonitis. Surg Radiol Anat 39:69–75. https://doi.org/10.1007/s00276-016-1682-1

    Article  PubMed  Google Scholar 

  15. Olewnik Ł, Wysiadecki G, Podgórski M, Polguj M, Topol M (2018) The plantaris muscle tendon and its relationship with the Achilles tendinopathy. Biomed Res Int 2018:9623579. https://doi.org/10.1155/2018/9623579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Oliva F, Marsilio E, Asparago G, Via AG, Biz C, Padulo J, Spoliti M, Foti C, Oliva G, Mannarini S, Rossi AA, Ruggieri P, Maffulli N (2022) Achilles tendon rupture and dysmetabolic diseases: a multicentric. Epidemiologic Study J Clin Med 11:3698. https://doi.org/10.3390/jcm11133698

    Article  PubMed  Google Scholar 

  17. Park JH, Cho J, Kim D, Kwon HW, Lee M, Choi YJ, Yoon KH, Park KR (2022) Anatomical classification for plantaris tendon insertion and its clinical implications: a cadaveric study. Int J Environ Res Public Health 19:5795. https://doi.org/10.3390/ijerph19105795

    Article  PubMed  PubMed Central  Google Scholar 

  18. Rodríguez-Vázquez JF, Jin ZW, Zhao P, Murakami G, Li XW, Jin Y (2018) Fetal development of digastric muscles in human body: a review and a finding in the flexor digitorum superficialis muscle. Folia Morphol (Warsz) 77:362–370. https://doi.org/10.5603/FM.a2017.0083

    Article  PubMed  Google Scholar 

  19. Sato T, Kim JH, Cho KH, Hayashi S, Rodríguez-Vázquez JF, Murakami G (2021) Fetal development and growth of the human erector spinae with special reference to attachments to the surface aponeurosis. Surg Radiol Anat 43:1503–1517. https://doi.org/10.1007/s00276-021-02759-w

    Article  PubMed  Google Scholar 

  20. Shaw HM, Vazquez OT, McGonagle D, Bydder G, Santer RM, Benjamin M (2008) Development of the human Achilles tendon enthesis organ. J Anat 213:718–724. https://doi.org/10.1111/j.1469-7580.2008.00997.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shiraishi Y, Jin ZW, Mitomo K, Yamamoto M, Murakami G, Abe H, Wilting J, Abe SI (2018) Fetal development of the human gluteus maximus muscle with special reference to its insertion to the tractus iliotibialis. Folia Morphol (Warsz) 77:144–150. https://doi.org/10.5603/FM.a2017.0060

    Article  CAS  PubMed  Google Scholar 

  22. Stecco C, Corradin M, Macchi V, Morra A, Porzionato A, Biz C, De Caro R (2013) Platar fascia anatomy and its relationship with Achilles tendon and paratenon. J Anat 223:665–676. https://doi.org/10.1111/joa.12111

    Article  PubMed  PubMed Central  Google Scholar 

  23. Stecco C, Cappellari A, Macchi V, Porzionato A, Morra A, Berizzi A, De Caro R (2014) The paratendineous tissues: an anatomical study of their role in the pathogenesis of tendinopathy. Surg Radiol Anat 36:561–572. https://doi.org/10.1007/s00276-013-1244-8

    Article  PubMed  Google Scholar 

  24. Stecco C, Fede C, Macchi V, Porzionato A, Petrelli L, Biz C, Stern R, De Caro R (2018) The fasciacytes: a new cell devoted to fascial gliding regulation. Clin Anat 31:667–676. https://doi.org/10.1002/ca.23072

    Article  PubMed  Google Scholar 

  25. Sugai N, Cho KH, Murakami G, Abe H, Uchiyama E, Kura H (2021) Distribution of sole Pacinian corpuscles: a histological study using near-term human feet. Surg Radiol Anat 43:1031–1039. https://doi.org/10.1007/s00276-021-02685-x

    Article  PubMed  Google Scholar 

  26. Szaro P, Polaczek M, Ciszek B (2021) The Kager’s fat pad radiological anatomy revised. Surg Radiol Anat 43:79–86. https://doi.org/10.1007/s00276-020-02552-1

    Article  PubMed  Google Scholar 

  27. Szaro P, Witkowski G, Ciszek B (2021) The twisted structure of the fetal calcaneal tendon is already visible in the second trimester. Surg Radiol Anat 43:1075–1082. https://doi.org/10.1007/s00276-020-02618-0

    Article  PubMed  Google Scholar 

  28. Theobald P, ByddderG DC, Nokes L, Pugh N, Benjamin M (2006) The functional anatomy of Kager’s fat pad in relation to retrocalcaneal problems and other hindfoot disorders. J Anat 208:91–97. https://doi.org/10.1111/j.1469-7580.2006.00510.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. van Dijk CN, van Sterkenburg MN, Wiegerinck JI, Karlsson J, Maffulli N (2011) Terminology for Achilles tendon related disorders. Knee Surg Sports traumatol Arthrosc 19:835–841. https://doi.org/10.1007/s00167-010-1374-z

    Article  PubMed  PubMed Central  Google Scholar 

  30. van Sterkenburg MN, Kerkhoffs GMMJ, Kleipool RP, van Dijk CN (2011) The plantaris tendon and a potential role in mid-portion Achilles tendinopathy: an observational anatomical study. J Anat 218:336–341. https://doi.org/10.1111/j.1469-7580.2011.01335.x

    Article  PubMed  PubMed Central  Google Scholar 

  31. Waśniewska-Włodarczyk A, Paulsen F, Olewnik Ł, Polguj M (2021) Morphological variability of the plantaris tendon in the human fetus. Sci Rep 11:16871. https://doi.org/10.1038/s41598-021-96391-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported in part by a Grant-in-Aid for Scientific Research (JSPS KAKENHI No. 16K08435; to Hiroshi Abe) from the Ministry of Education, Culture, Sports, Science and Technology in Japan.

Author information

Authors and Affiliations

Authors

Contributions

SH: project development, data collection, data analysis, manuscript writing. JHK: project development, data collection, manuscript writing, manuscript editing. ZWJ: data management, data analysis, manuscript editing. GM: project development, data collection, data analysis, manuscript writing, manuscript editing. JFRV: data collection, data analysis, manuscript editing. HA: data analysis, manuscript editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ji Hyun Kim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was conducted in accordance with the Declaration of Helsinki. The use of these specimens was approved by the Ethics Committee of Complutense University (B08/374) and Akita University (No. 1428).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayashi, S., Kim, J.H., Jin, Z.W. et al. Development and growth of the calcaneal tendon sheath with special reference to its topographical relationship with the tendon of the plantaris muscle: a histological study of human fetuses. Surg Radiol Anat 45, 247–253 (2023). https://doi.org/10.1007/s00276-023-03086-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00276-023-03086-y

Keywords

Navigation