Skip to main content

Advertisement

Log in

Fetal development and growth of the human erector spinae with special reference to attachments on the surface aponeurosis

  • Original Article
  • Published:
Surgical and Radiologic Anatomy Aims and scope Submit manuscript

Abstract

Purpose

The longissimus (LO) and iliocostalis (IC) of adults consist of myofibers extending from the superolateral to the inferomedial side of the back and, because of the same course, they are fused in the thoracolumbar region. The LO also has a medial attachment to the long myofibers of the transversospinalis (TS) showing a course from the superomedial to the inferolateral side. However, there is apparently no information regarding when and how these similar longitudinal muscles differentiate from a cluster of dorsomedial myotome cells.

Methods

We examined sagittal and horizontal sections of the trunks of 39 human embryos and fetuses (18–330 mm crown-rump length).

Results

At 6–7 weeks gestational age (GA), the surface aponeurosis appeared prior to and independent of the thoracolumbar fascia. At 6–9 weeks GA, the LO myofibers had a postero-inferior course, from the transverse process to the initial aponeurosis, whereas the TS myofibers had a postero-superior course, from a lateral extension of the intertransverse ligament to the aponeurosis. However, the IC consisted of supracostal longitudinal myofibers and was distant from the LO until 12 weeks GA. Because of the lack of ligamentous attachments and ribs, myofibers of the TS, LO, and IC took a similar inferior course in the lumbar region. When the early TS was represented by the transverso-aponeurotic muscle, consequently, the LO corresponded to the aponeuro-transversal muscle and was independent from the IC.

Conclusion

The classical model of TS and LO development does not recognize the essential role of the aponeurosis identified here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

AD:

Adrenal

AP:

Erector spinae aponeurosis

CTJ:

Future costotransverse joint

DI:

Diaphragm

DRG:

Dorsal root ganglion

IC:

Iliocostalis muscle

IE:

Intercostalis externus muscle

ISL:

Interspinous ligament

ITL:

Intertransverse ligament

K:

Kidney

L1:

First lumbar vertebra

LD:

Latissimus dorsi muscle

LO:

Longissimus muscle

OE:

Obliquus externus abdominis muscle

OI:

Obliquus abdominis muscle

PS:

Psoas major muscle

pTLF:

Posterior layer of the thoracolumbar fascia

QL:

Quadratus lumborum muscle

SA:

Serratus anterior muscle

Th12:

Twelfth thoracic vertebra

TR:

Trapezius muscle

TS:

Transversospinalis muscles

ZJ:

Zygapophysial joint

References

  1. Abe H, Hayashi S, Kim JH, Murakami G, Rodríguez-Vázquez JF, Jin ZW (2021) Fetal development of the thoracolumbar fascia with special reference to the fascial connection with the transversus abdominis, latissimus dorsi, and serratus posterior inferior muscles. Surg Raiol Anat Online ahead of print. https://doi.org/10.1007/s00276-020-02668-4

  2. Aizawa Y, Kumaki K (1996) The course and the segmental origins of the cutaneous branches of the thoracic dorsal rami. Acta Anat Nippon 71:195–210 (In Japanese with an English abstract)

    CAS  PubMed  Google Scholar 

  3. Benjamin M, Kaiser E, Milz S (2008) Structure-function relationships in tendons: a review. J Anat 212:211–228. https://doi.org/10.1111/j.1469-7580.2008.00864.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Besinger RE, Johnson TRB (1989) Doppler recordings of fetal movement: clinical correlation with real-time ultrasound. Obstet Gynecol 74:277–280

    CAS  PubMed  Google Scholar 

  5. Blasi M, Blasi J, Domingo T, Pérez-Bellmunt A, Miguel-Pérez M (2015) Anatomical and histological study of human deep fasciae development. Surg Radiol Anat 37:571–578. https://doi.org/10.1007/s00276-014-1396-1

    Article  PubMed  Google Scholar 

  6. Boszczyk A, Boszczyk B, Putz R (2002) Prenatal rotation of the lumbar spine and its relevance for the development zygapophysial joints. Spine 27:1094–1101. https://doi.org/10.1097/00007632-200205150-00016

    Article  PubMed  Google Scholar 

  7. Cho KH, Kim JH, Ha YS, Murakami G, Cho BH, Abe S (2012) Development of the deep flexor tendons and the lumbricalis muscle in the hand and foot: a histological study using human mid-term fetuses. Folia Morphol 71:154–163

    CAS  Google Scholar 

  8. Cho KH, Jin ZW, Abe H, Wilting J, Murakami G, Rodríguez-Vázquez JF (2018) Tensor fasciae latae muscle in human fetuses with special reference to its contribution onto development of the iliotibial tract. Folia Morphol 77:703–710. https://doi.org/10.5603/FM.a2018.0015

    Article  CAS  Google Scholar 

  9. Gasc JP (1981) Axial musculature. In: Gans C (ed) Biology of the reptilia, vol 11. Academic Press, London, pp 355–435

    Google Scholar 

  10. Gościcka D, Murawski E (1980) Tendinous intersections of the rectus abdominis muscle in human fetuses. Folia Morphol 39:427–434

    Google Scholar 

  11. Hedberg A, Carberg EB, Forssberg H, Hadders-Algra M (2005) Development of postural adjustments in sitting position during the first half year of life. Dev Med Child Neurol 47:312–320. https://doi.org/10.1017/s0012162205000605

    Article  PubMed  Google Scholar 

  12. Huijing PA (1999) Muscle as a collagen fiber reinforced composite: a review of force transmission in muscle and whole limb. J Biomech 32:329–345. https://doi.org/10.1016/s0021-9290(98)00186-9

    Article  CAS  PubMed  Google Scholar 

  13. Huq E, Wall CE, Taylor AB (2015) Epaxial muscle fiber architecture favors enhanced excursion and power in the leaper Galago senegalensis. J Anat 227:524–540. https://doi.org/10.1111/joa.12351

    Article  PubMed  PubMed Central  Google Scholar 

  14. Jin ZW, Hayashi S, Cho KW, Murakami G, Wilting J, Rodríguez-Vázquez JF (2020) Development and growth of the foot lumbricalis muscle: a histological study using human fetuses. Folia Morphol. https://doi.org/10.5603/FM.a2020.0108

    Article  Google Scholar 

  15. Jones FW (1944) Structure and function as seen in the foot. Tindall and Cox Bailliére, London

    Google Scholar 

  16. Kitamura K, Kim JH, Cho KH, Murakami G, Rodríguez-Vázquez JF, Yamamoto H (2020) Regional differences in the zygapophysial joint cavities: a histological study using human fetuses. Anat Rec. https://doi.org/10.1002/ar.24532

    Article  Google Scholar 

  17. Kitamura K, Hayashi H, Jin ZW, Yamamoto M, Murakami G, Rodríguez-Vázquez JF, Yamamoto H (2020b) The fetal cervical zygapophysial joint and its associated synovial tissues: a histological study using near-term human fetuses. Folia Morphol in press.

  18. Mekonen HK, Hikspoors JPJM, Mommen G, Kőohler SE, Lamers WH (2016) Development of the epaxial muscles in the human embryo. Clin Anat 29:1031–1045. https://doi.org/10.1002/ca.22775

    Article  PubMed  Google Scholar 

  19. Murakami G, Akita K, Sato T (1991) Arrangement and innervation of the iliocostalis and longissimus muscles of the brown caiman (Caiman crocodilus fuscus: Alligatoridae, Crocodilia). Am J Anat 192:241–256. https://doi.org/10.1002/aja.1001920304

    Article  CAS  PubMed  Google Scholar 

  20. Nishi S (1919) Zur vergleichenden anatomie der eigentlichen (genuine) rűckenmuskeln. Gegenbaurs Morphol Jahrb 50:167–318

    Google Scholar 

  21. Nishi S (1938) Muskelen des Rumpfes. In: Bolk L, Göppert E, Kallius E, Lubosch E (ed) Handbuch der vergleichenden Anatomie der Wirbeltier, Urban and Schwarzenberg, Berlin, pp 351–446.

  22. Nomizo A, Kudoh H, Sakai T (2005) IIiocotalis muscles in three mammals (dolphin, goat and human): their identification, structure and innervation. Anat Sci Int 80:212–222. https://doi.org/10.1111/j.1447-073X.2005.00115.x

    Article  PubMed  Google Scholar 

  23. Pearson AA, Sauter RW, Buckley TF (1966) Further observations on the cutaneous branches of the dorsal primary rami of the spinal nerves. Am J Anat 118:891–904. https://doi.org/10.1002/aja.1001180313

    Article  CAS  PubMed  Google Scholar 

  24. Rai R, Azih LC, Iwanaga J, Loukas M, Mortazavi M, Oskouian RJ, Tubbs RS (2018) Tendinous inscriptions of the rectus abdominis: a comprehensive review. Cureus 10:e3100. https://doi.org/10.7759/cureus.3100

    Article  PubMed  PubMed Central  Google Scholar 

  25. Rachwani J, Santamaria V, Saavedra SL, Woollacott MH (2015) The development of trunk control and its relation to reaching in infancy: a longitudinal study. Front Hum Neurosci 9:94. https://doi.org/10.3389/fnhum.2015.00094. eCollection 2015

  26. Sato T (1973) A new classification of the transversospinalis system; preliminary report. Proc Japan Acad 49:51–56

    Article  Google Scholar 

  27. Sato T (1974) On the rami intermedii of the spinal nerves and their equivalent offshoots; a contribution to classification of the trunk muscles. Z Anat Entwicklungsgesch 143:143–157. https://doi.org/10.1007/BF00525767

    Article  CAS  PubMed  Google Scholar 

  28. Sato T, Koizumi K, Kim JH, Kim JH, Wang BJ, Murakami G, Cho BH (2011) Fetal development of deep back muscles in the human thoracic region with a focus on transversospinalis muscles and the medial branch of the spinal nerve posterior ramus. J Anat 219:756–765. https://doi.org/10.1111/j.1469-7580.2011.01430.x

    Article  PubMed  PubMed Central  Google Scholar 

  29. Seyyar GK, Aras B, Aras O (2019) Trunk control and functionality in children with spastic cerebral palsy. Dev Neurorehabil. 22:120–125. https://doi.org/10.1080/17518423.2018.1460879

    Article  Google Scholar 

  30. Shiraishi Y, Jin ZW, Mitomo K, Yamamoto M, Murakami G, Abe H, Wilting J, Abe S (2018) Foetal development of the human gluteus maximus muscle with special reference to its fascial insertion. Folia Morphol 77:144–150. https://doi.org/10.5603/FM.a2017.0060

    Article  CAS  Google Scholar 

  31. Trotter JA (1993) Functional morphology of force transmission in skeletal muscle. Acta Anat 146:205–222. https://doi.org/10.1159/000147459

    Article  CAS  PubMed  Google Scholar 

  32. van Balen LC, Boxum AG, Dijkstra LJ, Hamer EG, Hielkema T, Reinders-Messelink HA, Hadders-Algra M (2018) Are postural adjustments during reaching related to walking development in typically developing infants and infants at risk of cerebral palsy? Infant Behav Dev. 50:107–115. https://doi.org/10.1016/j.infbeh.2017.12.004

    Article  PubMed  Google Scholar 

  33. Xu D, Jin ZW, Kim JH, Rodríguez-Vázquez JF, Murakami G, Hayashi S (2020) Umbilicus and the rectus sheath: a study using human fetuses. Surg Radiol Anat 42:461–471. https://doi.org/10.1007/s00276-019-02398-2

    Article  PubMed  Google Scholar 

  34. Yang JD, Hwang HP, Kim JH, Rodríguez-Vázquez JF, Abe S, Murakami G, Cho BH (2012) Development of the rectus abdominis and its sheath in the human fetus. Yonsei Med J 53:1028–1035. https://doi.org/10.3349/ymj.2012.53.5.1028

    Article  PubMed  PubMed Central  Google Scholar 

  35. Warmbrunn MV, de Bakker BS, Hagoort J, Alefs-de Bakker PB, OOstra RJ, (2018) Hitherto unknown detailed muscle anatomy in an 8-week-old embryo. J Anat 233:243–254. https://doi.org/10.1111/joa.12819

    Article  PubMed  PubMed Central  Google Scholar 

  36. Webster EL, Hudson PE, Channon SB (2014) Comparative functional anatomy of the epaxial musculature of digs (Canis familiaris) bred for sprinting vs. fighting. J Anat 225:317–327. https://doi.org/10.1111/joa.12208

    Article  PubMed  PubMed Central  Google Scholar 

  37. Willard FH, Vleeming A, Schuenke MD, Danneels L, Schleip R (2012) The thoracolumbar fascia: anatomy, function and clinical consideration. J Anat 221:507–536. https://doi.org/10.1111/j.1469-7580.2012.01511.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

TS: project development, data analysis, and manuscript writing. JHK: project development, data collection, and manuscript writing. KHC: data collection and critical revision. S Hayashi: data analysis, and critical revision. JFR-V: data analysis and critical revision. GM: project development, data collection and analysis, manuscript writing. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Ji Hyun Kim.

Ethics declarations

Conflict of interest

The authors declare no interests.

Ethical approval

This study was approved by the Ethics Committee of the University (B08/374).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sato, T., Kim, J.H., Cho, K.H. et al. Fetal development and growth of the human erector spinae with special reference to attachments on the surface aponeurosis. Surg Radiol Anat 43, 1503–1517 (2021). https://doi.org/10.1007/s00276-021-02759-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00276-021-02759-w

Keywords

Navigation