Skip to main content

Advertisement

Log in

Morphodynamic study of the corona mortis using the SimLife® technology

  • Original Article
  • Published:
Surgical and Radiologic Anatomy Aims and scope Submit manuscript

29 January 2024 Editor's Note: Readers are alerted that concerns are raised about authorship and missing permissions for some of the content of the article. Appropriate editorial action will be taken once this matter is resolved.

A Correction to this article was published on 22 February 2023

This article has been updated

Abstract

Purpose

Open book pelvic ring fractures are potentially life-threatening, due to their instability and major hemorrhage risk. During the open reduction and internal fixation, the pelvic approach remains a technical challenge, as the surgeon wants to prevent any iatrogenic damage of the vascular loop located in the retro-pubic area called corona mortis (CMOR). Recently, the cadaver perfused SimLife® technology has been developed to improve the surgeon training, out of the operating room. This study aimed to compare two models of cadaveric dissection, to assess the interest of the perfused SimLife® in providing dynamic aspect of anatomy in the identification of CMOR and its topography.

Methods

Twelve human cadaveric pelvises have been dissected, following two protocols. 12 hemi-pelvises of the dissections were performed without perfusion (Model A), whereas the 12 other hemi-pelvises have been prepared with the SimLife® pulsatile perfusion (Model B). The prevalence and morphologic parameters determined: length, diameter and distance between the CMOR and the pubic symphysis.

Results

The CMOR has been found in 66.67% of the cases. The length, the diameter, and the distance between the CMOR and the pubic symphysis were significantly higher in model B (respectively p = 0.029, p = 0.01, and p = 0.022).

Conclusion

These results suggest that the CMOR is easier to identify and to dissect with the SimLife® perfusion. As part of the surgical training of any trauma surgeon, this model could help him to keep in mind the CMOR topography, to improve the open book lesion management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

All data and materials analyzed during our current study are available from the corresponding author on request.

Change history

  • 29 January 2024

    Editor's Note: Readers are alerted that concerns are raised about authorship and missing permissions for some of the content of the article. Appropriate editorial action will be taken once this matter is resolved.

  • 22 February 2023

    A Correction to this paper has been published: https://doi.org/10.1007/s00276-023-03112-z

References

  1. Gänsslen A, Pohlemann T, Paul C, Lobenhoffer P, Tscherne H (1996) Epidemiology of pelvic ring injuries. Injury 27(Suppl 1):13–20

    Article  Google Scholar 

  2. Youngman JR, Day AC (2002) Pelvic fractures. Hosp Med 63(12):750–752

    Article  PubMed  Google Scholar 

  3. Halawi MJ (2015) Pelvic ring injuries: emergency assessment and management. J Clin Orthop Trauma 6(4):252–258

    Article  PubMed  PubMed Central  Google Scholar 

  4. Rice PL Jr, Rudolph M (2007) Pelvic fractures. Emerg Med Clin North Am 25(3):795–802

    Article  PubMed  Google Scholar 

  5. Melhem E, Riouallon G, Habboubi K, Gabbas M, Jouffroy P (2020) Epidemiology of pelvic and acetabular fractures in France. Orthop Traumatol Surg Res OTSR 106(5):831–839

    Article  PubMed  Google Scholar 

  6. Watson-Jones R (2005) Dislocations and fracture-dislocations of the pelvis. Br J Surg 25(100):773–781

    Article  Google Scholar 

  7. Halawi MJ (2016) Pelvic ring injuries: surgical management and long-term outcomes. J Clin Orthop Trauma 7(1):1–6

    Article  PubMed  Google Scholar 

  8. Tile M (1988) Pelvic ring fractures: should they be fixed? J Bone Joint Surg Br 70(1):1–12

    Article  CAS  PubMed  Google Scholar 

  9. Burgess AR, Eastridge BJ, Joung JW, Ellison TS, Ellison PS Jr, Poka A, Bathon GH, Brumback RJ (1990) Pelvic ring disruptions: effective classification system and treatment protocols. J Trauma 30(7):848–856

    Article  CAS  PubMed  Google Scholar 

  10. Tile M (1996) Acute pelvic fractures: I. causation and classification. J Am Acad Orthop Surg 4(3):143–151

    Article  CAS  PubMed  Google Scholar 

  11. Giannoudis PV, Pape HC (2004) Damage control orthopedics in unstable pelvic ring injuries. Injury 55(7):671–677

    Article  Google Scholar 

  12. Luijendijk RW, Jeekel J, Storm RK, Schutte PJ, Hop WC, Drogendijk AC, Huikeshoven FJ (1997) The low transverse pfannenstiel incision and the prevalence of incisional hernia and nerve entrapment. Ann Surg 225(4):365–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pierce TP, Issa K, Callaghan JJ, Wright C (2016) Traumatic diastasis of the pubic symphysis-a review of fixation method outcomes. Surg Technol Int 29:265–269

    PubMed  Google Scholar 

  14. Tosounidis TH, Giannoudis VP, Kanakaris NK, Giannoudis PV (2018) The ilioinguinal approach: state of the art. JBJS Essent Surg Tech 8(2):e19

    Article  PubMed  PubMed Central  Google Scholar 

  15. Fernández-Lobato R, Tartas-Ruiz A, Jiménez-Miramon FJ, Adana-Belbel JCR, Esteban ML (2006) Stoppa procedure in bilateral inguinal hernia. Hernia 10(2):179–183

    Article  PubMed  Google Scholar 

  16. Khoury A, Weill Y, Mosheiff R (2012) The Stoppa approach for acetabular fracture. Oper Orthop Traumatol 24(4–5):439–448

    Article  CAS  PubMed  Google Scholar 

  17. Cole JD, Bolhofner BR (1994) Acetabular fracture fixation via a modified Stoppa limited intrapelvic approach. Description of operative technique and preliminary treatment results. Clin Orthop 305:112–123

    Article  Google Scholar 

  18. Tannast M, Keel MJB, Siebenrock KA, Bastian JD (2019) Open reduction and internal fixation of acetabular fractures using the modified stoppa approach. JBJS Essent Surg Tech 9(1):e3

    Article  PubMed  PubMed Central  Google Scholar 

  19. Daeubler B, Anderson SE, Leunig M, Triller J (2003) Hemorrhage secondary to pelvic fracture: coil embolization of an aberrant obturator artery. J Endovasc Ther 10(3):676–680

    Article  PubMed  Google Scholar 

  20. Darmanis S, Lewis A, Mansoor A, Bircher M (2007) Corona mortis: an anatomical study with clinical implications in approaches to the pelvis and acetabulum. Clin Anat N Y N 20(4):433–439

    Article  CAS  Google Scholar 

  21. Heichinger R, Pretterklieber ML, Hammer N, Pretterklieber B (2022) The corona mortis is similar in size to the regular obturator artery, but is highly variable at the level of origin: an anatomical study. Anat Sci Int. https://doi.org/10.1007/s12565-022-00671-w

    Article  PubMed  PubMed Central  Google Scholar 

  22. Testut L, Latarjet A (1948) Arthrologie. In: Latarjet A (ed) Traité d’anatomie humaine. Doin, Paris

    Google Scholar 

  23. Cloquet J (1817) Recherches anatomiques sur les hernies de l’abdomen. Méquignon-Marvis, Paris

    Google Scholar 

  24. Hesselbach AK (1819) Ueber den Ursprung und Verlauf der Bauchdeckenschlagader und der Hüftbeinschlagader. Med-Chirurg Zeitung 3:71–76

    Google Scholar 

  25. Schlobig SFJ (1844) Observationes quaedam de varia arteriae obturatoriae origine et decursu. Ex Officina Ernesti Stange. Academia Lipsiensi, Leipzig

    Google Scholar 

  26. Quain R (1844) The anatomy of the arteries of the human body and its applications to pathology and operative surgery. Taylor and Walton, London

    Google Scholar 

  27. Hoffmann CEE (1878) Lehrbuch der Anatomie des Menschen. Verlag von Eduard Besold, Erlangen

    Google Scholar 

  28. Hartmann R (1881) Handbuch der Anatomie des Menschen für Studirende und Aerzte. R. Schultz und Comp, Strassburg

    Google Scholar 

  29. Pfitzner W (1889) Über die Ursprungsverhältnisse der Arteria obturatoria. Anat Anz 4:528–531

    Google Scholar 

  30. Jastschinski S (1891) Die Abweichungen der Arteria obturatoria nebst Erklärung ihres Entstehens. Int Monatsschrift Anat Physiol 8(367–386):417–446

    Google Scholar 

  31. Dwight T (1894) Statistics of variations with remarks on the use of this method in anthropology, origin of the obturator artery. Anat Anz 10:209–215

    Google Scholar 

  32. Lipshutz B (1918) A Composite study of the hypogastric artery and its branches. Ann Surg 67(5):584–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Adachi B (1928) Das Arteriensystem der Japaner. Das Arteriensystem der Japaner. Maruzen, Kyoto

    Google Scholar 

  34. Pick JW, Anson BJ, Ashley L (1942) The origin of the obturator artery. A study of 640 body-halves. Am J Anat 70(2):317–343

    Article  Google Scholar 

  35. Braithwaite JL (1952) Variations in origin of the parietal branches of the internal iliac artery. J Anat 86(4):423–430

    PubMed Central  Google Scholar 

  36. Letournel E (1993) The treatment of acetabular fractures through the ilioinguinal approach. Clin Orthop 292:62–76

    Article  Google Scholar 

  37. Teague DC, Graney DO, Routt ML Jr (1996) Retropubic vascular hazards of the ilioinguinal exposure: a cadaveric and clinical study. J Orthop Trauma 10(3):156–159

    Article  CAS  PubMed  Google Scholar 

  38. Hochwald N, Tornetta P, Levine R (1996) Corona mortis incidence and location. Clin Orthop 329:97–101

    Article  Google Scholar 

  39. Gilroy AM, Hermey DC, DiBenedetto LM, Marks SC Jr, Page DW, Lei QF (1997) Variability of the obturator vessels. Clin Anat 10(5):328–332

    Article  CAS  PubMed  Google Scholar 

  40. Sarikcioglu L, Sindel M, Akyildiz F, Gur S (2003) Anastomotic vessels in the retropubic region: corona mortis. Folia Morphol 62(3):179–182

    Google Scholar 

  41. Okcu G, Erkan S, Yercan HS, Ozic U (2004) The incidence and location of corona mortis: a study on 75 cadavers. Acta Orthop Scand 75(1):53–55

    Article  PubMed  Google Scholar 

  42. Rusu MC, Cergan R, Motoc AGM, Folescu R, Pop E (2010) Anatomical considerations on the corona mortis. Surg Radiol Anat SRA 32(1):17–24

    Article  PubMed  Google Scholar 

  43. Stavropoulou-Deli A, Anagnostopoulou S (2013) Corona mortis: anatomical data and clinical considerations. Aust N Z J Obstet Gynaecol 53(3):283–286

    Article  PubMed  Google Scholar 

  44. Pillay M, Rajive AV (2015) A study of variations in the origin of obturator artery and its clinical significance. J Clin Diagn Res 9(8):12–15

    Google Scholar 

  45. Bargoria VK, Lelei LK, Elbadawi M, Njoroge A, Lagat D (2016) The anatomy of pelvic corona mortis vessels in Black Africans. A cadaveric Study. East Afr Orthop J 9(2):67–71

    Google Scholar 

  46. Al-Talalwah W (2016) A new concept and classification of corona mortis and its clinical significance. Chin J Traumatol Zhonghua Chuang Shang Za Zhi 19(5):251–254

    Article  PubMed  Google Scholar 

  47. Cavalié G, Perez E, Pauty M, Bellier A, Prod’homme M, Boudissa M, Tonetti J, Chaffanion P (2019) Étude anatomique de la corona mortis : prévalence, morphologie et localisation. Morphologie 103(342):95

    Article  Google Scholar 

  48. Berberoglu M, Uz A, Özmen MM, Bozkurt MC, Erkuran C, Taner S, Tekin A, Tekdemir I (2001) Corona mortis: an anatomic study in seven cadavers and an endoscopic study in 28 patients. Surg Endosc 15(1):72–75

    Article  CAS  PubMed  Google Scholar 

  49. Letournel E (1981) Surgical fixation of displaced pelvic fractures and dislocations of the symphysis pubis (excluding acetabular fractures) (author’s transl). Rev Chir Orthop Reparatrice Appar Mot 67(8):771–782

    CAS  PubMed  Google Scholar 

  50. Ates M, Kinaci E, Kose E, Soyer V, Sarici B, Cuglan S, Korkmaz F, Dirican A (2016) Corona mortis: in vivo anatomical knowledge and the risk of injury in totally extraperitoneal inguinal hernia repair. Hernia J Hernias Abdom Wall Surg 20(5):659–665

    Article  CAS  Google Scholar 

  51. Pungpapong S, Thum-umnauysuk S (2005) Incidence of corona mortis; preperitoneal anatomy for laparoscopic hernia repair. J Med Assoc Thail Chotmaihet Thangphaet 88(Suppl 4):S51-53

    Google Scholar 

  52. Lee F, Lau H (2003) A prospective endoscopic study of retropubic vascular anatomy in 121 patients undergoing endoscopic extraperitoneal inguinal hernioplasty. Surg Endosc 17(9):1376–1379

    Article  PubMed  Google Scholar 

  53. Karakurt L, Karaca I, Yilmaz E, Burma O, Serin E (2002) Corona mortis: incidence and location. Arch Orthop Trauma Surg 122(3):163–164

    Article  PubMed  Google Scholar 

  54. Wada T, Itoigawa Y, Wakejima T, Koga A, Ichimura K, Maruyama Y, Ishijima M (2022) Anatomical position of the corona mortis relative to the anteroposterior and inlet views. Eur J Orthop Surg Traumatol Orthop Traumatol 32(2):341–345

    Article  Google Scholar 

  55. Dueñas-Garcia OF, Kim Y, Leung K, Flynn MK (2017) Vascular anatomical relationships of the retropubic space and the sacrospinous ligament, using three-dimensional imaging. Int Urogynecology J 28(8):1177–1182

    Article  Google Scholar 

  56. Steinberg EL, Ben-Tov T, Aviram G, Steinberg Y, Rath E, Rosen G (2017) Corona mortis anastomosis: a three-dimensional computerized tomographic angiographic study. Emerg Radiol 24(5):519–523

    Article  PubMed  Google Scholar 

  57. Perandini S, Perandini A, Puntel G, Puppini G, Montemezzi S (2018) Corona mortis variant of the obturator artery: a systematic study of 300 hemipelvises by means of computed tomography angiography. Pol J Radiol 8:e519–e523

    Google Scholar 

  58. Selçuk İ, Tatar I, Firat A, Huri E, Güngor T (2018) Is corona mortis a historical myth? A perspective from a gynecologic oncologist. J Turk Ger Gynecol Assoc 19(3):171–172

    Article  PubMed  PubMed Central  Google Scholar 

  59. Lorenz JM, Leef JA (2007) Embolization of postsurgical obturator artery pseudoaneurysm. Semin Interv Radiol 24(1):068–071

    Article  Google Scholar 

  60. Smith JC, Gregorius JC, Breazeale BH, Watkins GE (2009) The corona mortis, a frequent vascular variant susceptible to blunt pelvic trauma: identification at routine multidetector CT. J Vasc Interv Radiol JVIR 20(4):455–460

    Article  PubMed  Google Scholar 

  61. Marsman JW, Schilstra SH, Van Leeuwen H (1984) Angiography and embolization of the corona mortis (aberrant obturator artery). RöFo–Fortschritte Auf Dem Geb Röntgenstrahlen Bildgeb Verfahr 141(12):708–710

    Article  CAS  Google Scholar 

  62. Sanna B, Henry BM, Vikse J, Skinningsrud B, Pekala JR, Walocha JA, Cirocchi R, Tomaszewski KA (2018) The prevalence and morphology of the corona mortis (Crown of death): a meta-analysis with implications in abdominal wall and pelvic surgery. Injury 49(2):302–308

    Article  PubMed  Google Scholar 

  63. Faure JP, Breque C, Danion J, Delpech PO, Oriot D, Richer JP (2017) SIM life: a new surgical simulation device using a human perfused cadaver. Surg Radiol Anat 39(2):211–217

    Article  CAS  PubMed  Google Scholar 

  64. Di Francia R, Tanner JL, Marolleau J (2020) The first use of laparoscopy to treat pelvic ring fractures: a case report. Int J Surg Case Rep 76:60–63

    Article  PubMed  PubMed Central  Google Scholar 

  65. Carey JN, Minneti M, Leland HA, Demetriades D, Talving P (2015) Perfused fresh cadavers: method for application to surgical simulation. Am J Surg 210(1):179–187

    Article  PubMed  Google Scholar 

  66. Tosounidis TH, Gudipati S, Panteli M, Kanakaris NK, Giannoudis PV (2015) The use of buttress plates in the management of acetabular fractures with quadrilateral plate involvement: is it still a valid option? Int Orthop 39(11):2219–2226

    Article  PubMed  Google Scholar 

  67. Grabo D, Bardes J, Sharon M, Borgstrom D (2020) Initial report on the impact of a perfused fresh cadaver training program in general surgery resident trauma education. Am J Surg 220(1):109–113

    Article  PubMed  Google Scholar 

  68. Cardoso GI, Chinelatto LA, Hojaij F, Akamatsu FE, Jacomo AL (2021) Corona mortis: a systematic review of literature. Clin Sao Paulo Braz 76:e2182

    Article  Google Scholar 

  69. Noussios G, Galanis N, Chatzis I, Konstantinidis S, Filo E, Karavasilis G, Katsourakis A (2020) The anatomical characteristics of corona mortis: a systematic review of the literature and its clinical importance in hernia repair. J Clin Med Res 12(2):108–114

    Article  PubMed  PubMed Central  Google Scholar 

  70. Hong HX, Pan ZJ, Chen X, Huang ZJ (2004) An anatomical study of corona mortis and its clinical significance. Chin J Traumatol Zhonghua Chuang Shang Za Zhi 7(3):165–169

    PubMed  Google Scholar 

  71. Abbas A, Awadelseid MH, Abdalgawi MA (2021) Anatomical and clinical implication of corona mortis in the anterior approaches of pelvis in sudanese patient. Open J Orthop 11(03):85–95

    Article  Google Scholar 

  72. Du MM, Wang AG, Shi XH, Zhao B, Liu M (2020) Safety precautions for the corona mortis using minimally invasive ilioinguinal approach in treatment of anterior pelvic ring fracture. Orthop Surg 12(3):957–963

    Article  PubMed  PubMed Central  Google Scholar 

  73. Xu X, Teng F, Li J, Wu J, Zhu R, Ji W (2018) Life-threatening hemorrhage from the corona mortis treated with balloon-assisted coiling technique. Am J Emerg Med 36(3):527.e1-527.e3

    Article  PubMed  Google Scholar 

  74. De Kleuver M, Kooijman MA, Kauer JM, Veth RP (1998) Pelvic osteotomies: anatomic pitfalls at the pubic bone. Arch Orthop Trauma Surg 117(4–5):270–272

    Article  PubMed  Google Scholar 

  75. Kawai K, Honma S, Koizumi M, Kodama K (2008) Inferior epigastric artery arising from the obturator artery as a terminal branch of the internal iliac artery and consideration of its rare occurrence. Ann Anat–Anat Anz 190(6):541–548

    Article  Google Scholar 

  76. Pai MM, Krishnamurthy A, Prabhu LV, Pai MV, Kumar SA, Hadimani GA (2009) Variability in the origin of the obturator artery. Clinics 64(9):897–901

    Article  PubMed  PubMed Central  Google Scholar 

  77. Redman TT, Ross EM (2018) A novel expeditionary perfused cadaver model for trauma training in the out-of-hospital setting. J Emerg Med 55(3):383–389

    Article  PubMed  Google Scholar 

  78. Garrett HE Jr (2001) A human cadaveric circulation model. J Vasc Surg 33(5):1128–1130

    Article  PubMed  Google Scholar 

  79. Carey JN, Rommer E, Sheckter C, Minneti M, Talving P, Wong AK, Garner W, Urata MM (2014) Simulation of plastic surgery and microvascular procedures using perfused fresh human cadavers. J Plast Reconstr Aesthet Surg 67(2):e42–e48

    Article  PubMed  Google Scholar 

  80. Carden AJ, Salcedo EC, Leshikar DE, Utter GH, Wilson MD, Galante JM (2016) Randomized controlled trial comparing dynamic simulation with static simulation in trauma. J Trauma Acute Care Surg 80(5):748–754

    Article  PubMed  Google Scholar 

  81. Morris AS, Langari R (2016) Measurement and instrumentation: theory and application. Elsevier, AP, Amsterdam, Boston

    Google Scholar 

Download references

Acknowledgements

Acknowledging to all body’s donors and their families. “The authors sincerely thank those who donated their bodies to science so that anatomical research could be performed. Results from such research can potentially increase mankind’s overall knowledge that can then improve patient care. Therefore, these donors and their families deserve our highest gratitude”. Our thanks to our anatomic monitors and to members of the ABS Laboratory. We wish to thank again the members of the Radiology Service of the Poitiers University, Mrs. D’Aubigné and his team of the “Museum of the Naval Health School of Rochefort-sur-Mer”.

Funding

None of us disclose any industry affiliation.

Author information

Authors and Affiliations

Authors

Contributions

RB: project management, anatomic dissection, data collection, data analysis, prepared the figures, wrote and reviewed the manuscript. DJ: anatomic dissection, data collection, prepared the figures, reviewed the manuscript. VT: data, analysis, reviewed the manuscript. NM-V: data analysis, reviewed the manuscript. RA: data collection, reviewed the manuscript. RJ-P: reviewed the manuscript. HT: reviewed the manuscript. BC: project management, reviewed the manuscript. FJ-P reviewed the manuscript.

Corresponding author

Correspondence to Robert Beya.

Ethics declarations

Conflict of interest

None for all authors. The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

Ethic Declarations respected body donors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: In this article Author name first and last names are reversed, should be changed from “Beya Robert” to “Robert Beya”.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beya, R., Jérôme, D., Tanguy, V. et al. Morphodynamic study of the corona mortis using the SimLife® technology. Surg Radiol Anat 45, 89–99 (2023). https://doi.org/10.1007/s00276-022-03067-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00276-022-03067-7

Keywords

Navigation