Skip to main content

Advertisement

Log in

Combined Loco-Regional and Systemic Treatment Strategies for Hepatocellular Carcinoma: From Basics to New Developments

  • REVIEW
  • INTERVENTIONAL ONCOLOGY
  • Published:
CardioVascular and Interventional Radiology Aims and scope Submit manuscript

Abstract

Recent advances in systemic therapeutic options have led to improved survival in patients with advanced hepatocellular carcinoma. In order to optimize patient outcomes across different disease stages, attempts are being made at exploiting combinations of loco-regional treatments and systemic therapeutic regimens. The possibilities of a beneficial synergistic effect are strongly supported by biological evidence of changes in tumor microenvironment and systemic immunity. With the advent of newer interventional technologies and newer biological and immunological drugs, these possibilities keep on gaining interest and expectations, yet many questions remain unanswered as to how to best manipulate and combine the two therapeutic approaches.This review aims at providing a general overview of biological foundations, preliminary clinical applications, critical issues and future directions of this constantly growing field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Vogel A, Cervantes A, Chau I, Daniele B, Llovet J, Meyer T, et al. Hepatocellular carcinoma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2018;29:238–55.

    Article  Google Scholar 

  2. Reig M, Forner A, Rimola J, Ferrer-Fàbrega J, Burrel M, Garcia-Criado Á, et al. BCLC strategy for prognosis prediction and treatment recommendation: the 2022 update. J Hepatol. 2022;76:681–93.

    Article  Google Scholar 

  3. Salem R, Johnson GE, Kim E, Riaz A, Bishay V, Boucher E, et al. Yttrium-90 radioembolization for the treatment of solitary. Unresectable HCC LEGACY Study Hepatol. 2021;74:2342–52.

    CAS  Google Scholar 

  4. Matsumoto MM, Mouli S, Saxena P, Gabr A, Riaz A, Kulik L, et al. Comparing real world, personalized, multidisciplinary tumor board recommendations with BCLC algorithm: 321-patient analysis. Cardiovasc Interv Radiol. 2021;44:1070–80.

    Article  Google Scholar 

  5. Xu LL, Zhang M, Yi PS, Zheng XB, Feng L, Lan C, et al. Hepatic resection combined with radiofrequency ablation versus hepatic resection alone for multifocal hepatocellular carcinomas: a meta-analysis. J Huazhong Univ Sci Technol Med Sci. 2017;37:974–80.

    Google Scholar 

  6. Facciorusso A, Del Prete V, Antonino M, Crucinio N, Neve V, Di Leo A, et al. Post-recurrence survival in hepatocellular carcinoma after percutaneous radiofrequency ablation. Dig Liver Dis. 2014;46:1014–9.

    Article  Google Scholar 

  7. Tiong L, Maddern GJ. Systematic review and meta-analysis of survival and disease recurrence after radiofrequency ablation for hepatocellular carcinoma. Br J Surg. 2011;98:1210–24.

    Article  CAS  Google Scholar 

  8. Chen S, Peng Z, Zhang Y, Chen M, Li J, Guo R, et al. Lack of response to transarterial chemoembolization for intermediate-stage hepatocellular carcinoma: abandon or repeat? Radiology. 2021;298:680–92.

    Article  Google Scholar 

  9. Dong G, Zheng QD, Ma M, Wu SF, Zhang R, Yao RR, et al. Angiogenesis enhanced by treatment damage to hepatocellular carcinoma through the release of GDF15. Cancer Med. 2018;7:820–30.

    Article  CAS  Google Scholar 

  10. Li X, Feng GS, Zheng CS, Zhuo CK, Liu X. Influence of transarterial chemoembolization on angiogenesis and expression of vascular endothelial growth factor and basic fibroblast growth factor in rat with Walker-256 transplanted hepatoma: a experimental study. World J Gastroenterol. 2003;9:2445–9.

    Article  CAS  Google Scholar 

  11. Cheng AL, Qin S, Ikeda M, Galle PR, Ducreux M, Kim TY, et al. Updated efficacy and safety data from IMbrave150: atezolizumab plus bevacizumab versus sorafenib for unresectable hepatocellular carcinoma. J Hepatol. 2022;76:862–73.

    Article  CAS  Google Scholar 

  12. Grass GD, Krishna N, Kim S. The immune mechanisms of abscopal effect in radiation therapy. Curr Probl Cancer. 2016;40:10–24.

    Article  Google Scholar 

  13. Barcellos-Hoff MH, Park C, Wright EG. Radiation and the microenvironment-tumorigenesis and therapy. Nat Rev Cancer. 2005;5:867–75.

    Article  CAS  Google Scholar 

  14. Chino F, Pollis KE, Choi S, Salama JK, Palta M. Stereotactic body radiation therapy-induced abscopal effect on hepatocellular carcinoma after treatment for lung cancer: a case report. Hepatology. 2018;68:1653–5.

    Article  Google Scholar 

  15. Rao P, Escudier B, De Baere T. Spontaneous regression of multiple pulmonary metastases after radiofrequency ablation of a single metastasis. Cardiovasc Interv Radiol. 2011;34:424–30.

    Article  Google Scholar 

  16. Powerski M, Drewes R, Omari J, Relja B, Surov A, Pech M. Intra-hepatic abscopal effect following radioembolization of hepatic metastases. Cardiovasc Interv Radiol. 2020;43:1641–9.

    Article  Google Scholar 

  17. Den Brok MH, Sutmuller RP, Nierkens S, Bennink EJ, Frielink C, Toonen LW, et al. Efficient loading of dendritic cells following cryo and radiofrequency ablation in combination with immune modulation induces anti-tumour immunity. Br J Cancer. 2006;95:896–905.

    Article  Google Scholar 

  18. Ayaru L, Pereira SP, Alisa A, Pathan AA, Williams R, Davidson B, et al. Unmasking of α-fetoprotein-specific CD4 + T cell responses in hepatocellular carcinoma patients undergoing embolization. J Immunol. 2007;178:1914–22.

    Article  CAS  Google Scholar 

  19. Guo J, Wang S, Han Y, Jia Z, Wang R. Effects of transarterial chemoembolization on the immunological function of patients with hepatocellular carcinoma. Oncol Lett. 2021;22(1):1–8.

    Article  Google Scholar 

  20. Han Y, Liu D, Li L. PD-1/PD-L1 pathway: current researches in cancer. Am J Cancer Res. 2020;10:727–42.

    CAS  Google Scholar 

  21. Fagnoni FF, Zerbini A, Pelosi G, Missale G. Combination of radiofrequency ablation and immunotherapy. Front Biosci. 2008;13:369–81.

    Article  CAS  Google Scholar 

  22. Gameiro SR, Higgins JP, Dreher MR, Woods DL, Reddy G, Wood BJ, et al. Combination therapy with local radiofrequency ablation and systemic vaccine enhances antitumor immunity and mediates local and distal tumor regression. PLoS ONE. 2013;8(7):70417.

    Article  Google Scholar 

  23. Leuchte K, Staib E, Thelen M, Gödel P, Lechner A, Zentis P, et al. Microwave ablation enhances tumor-specific immune response in patients with hepatocellular carcinoma. Cancer Immunol Immunother. 2021;70:893–907.

    Article  CAS  Google Scholar 

  24. Hiroishi K, Eguchi J, Baba T, Shimazaki T, Ishii S, Hiraide A, et al. Strong CD8+ T-cell responses against tumor-associated antigens prolong the recurrence-free interval after tumor treatment in patients with hepatocellular carcinoma. J Gastroenterol. 2010;45:451–8.

    Article  CAS  Google Scholar 

  25. Greten TF, Duffy AG, Korangy F. Hepatocellular carcinoma from an immunologic perspective. Clin Cancer Res. 2013;19:6678–85.

    Article  CAS  Google Scholar 

  26. Jia ZZ, Jiang GM, Feng YL. Serum HIF-1α and VEGF levels pre- and post-TACE in patients with primary liver cancer. Chinese Med Sci J. 2011;26:158–62.

    Article  CAS  Google Scholar 

  27. Yang J, Yan J, Liu B. Targeting VEGF/VEGFR to modulate antitumor immunity. Front Immunol. 2018;9:978.

    Article  Google Scholar 

  28. Voron T, Colussi O, Marcheteau E, Pernot S, Nizard M, Pointet AL, et al. VEGF-A modulates expression of inhibitory checkpoints on CD8++ T cells in tumors. J Exp Med. 2015;212:139–48.

    Article  CAS  Google Scholar 

  29. Lee WS, Yang H, Chon HJ, Kim C. Combination of anti-angiogenic therapy and immune checkpoint blockade normalizes vascular-immune crosstalk to potentiate cancer immunity. Exp Mol Med. 2020;52:1475–85.

    Article  CAS  Google Scholar 

  30. Galle PR, Forner A, Llovet JM, Mazzaferro V, Piscaglia F, Raoul JL, et al. EASL clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol. 2018;69:182–236.

    Article  Google Scholar 

  31. Di Sandro S, Benuzzi L, Lauterio A, Botta F, De Carlis R, Najjar M, et al. Single hepatocellular carcinoma approached by curative-intent treatment: a propensity score analysis comparing radiofrequency ablation and liver resection. Eur J Surg Oncol. 2019;45(9):1691–9.

    Article  Google Scholar 

  32. Bruix J, Takayama T, Mazzaferro V, Chau GY, Yang J, Kudo M, et al. Adjuvant sorafenib for hepatocellular carcinoma after resection or ablation (STORM): a phase 3, randomised, double-blind, placebo-controlled trial. Lancet Oncol. 2015;16:1344–54.

    Article  CAS  Google Scholar 

  33. Mehta A, Oklu R, Sheth RA. Thermal ablative therapies and immune checkpoint modulation: can locoregional approaches effect a systemic response? Gastroenterol Res Pract. 2016;2016:1–11.

    Article  Google Scholar 

  34. Duffy AG, Ulahannan SV, Makorova-Rusher O, Rahma O, Wedemeyer H, Pratt D, et al. Tremelimumab in combination with ablation in patients with advanced hepatocellular carcinoma. J Hepatol. 2017;66:545–51.

    Article  CAS  Google Scholar 

  35. Lyu N, Kong Y, Li X, Mu L, Deng H, Chen H, et al. Ablation reboots the response in advanced hepatocellular carcinoma with stable or atypical response during PD-1 therapy: a proof-of-concept study. Front Oncol. 2020;9(10):580241.

    Article  Google Scholar 

  36. Takayasu K, Arii S, Kudo M, Ichida T, Matsui O, Izumi N, et al. Superselective transarterial chemoembolization for hepatocellular carcinoma validation of treatment algorithm proposed by Japanese guidelines. J Hepatol. 2012;56:886–92.

    Article  Google Scholar 

  37. Lencioni R, de Baere T, Soulen MC, Rilling WS, Geschwind JFH. Lipiodol transarterial chemoembolization for hepatocellular carcinoma: a systematic review of efficacy and safety data. Hepatology. 2016;64:106–16.

    Article  CAS  Google Scholar 

  38. Peck-Radosavljevic M, Kudo M, Raoul J-L, Lee HC, Decaens T, Heo J, et al. Outcomes of patients (pts) with hepatocellular carcinoma (HCC) treated with transarterial chemoembolization (TACE): global OPTIMIS final analysis. J Clin Oncol. 2018;36:4018–4018.

    Article  Google Scholar 

  39. Pinter M, Ulbrich G, Sieghart W, Kölblinger C, Reiberger T, Li S, et al. Hepatocellular carcinoma: a phase II randomized controlled double-blind trial of transarterial chemoembolization in combination with biweekly intravenous administration of bevacizumab or a placebo1. Radiology. 2015;277:903–12.

    Article  Google Scholar 

  40. Smolka S, Chapiro J, Manzano W, Treilhard J, Reiner E, Deng Y, et al. The impact of antiangiogenic therapy combined with transarterial chemoembolization on enhancement based quantitative tumor response assessment in patients with hepatocellular carcinoma. Clin Imaging. 2017;46:1–7.

    Article  Google Scholar 

  41. Lencioni R, Llovet JM, Han G, Tak WY, Yang J, Guglielmi A, et al. Sorafenib or placebo plus TACE with doxorubicin-eluting beads for intermediate stage HCC: the SPACE trial. J Hepatol. 2016;64:1090–8.

    Article  CAS  Google Scholar 

  42. Meyer T, Fox R, Ma YT, Ross PJ, James MW, Sturgess R, et al. Sorafenib in combination with transarterial chemoembolisation in patients with unresectable hepatocellular carcinoma (TACE 2): a randomised placebo-controlled, double-blind, phase 3 trial. Lancet Gastroenterol Hepatol. 2017;2:565–75.

    Article  Google Scholar 

  43. Kudo M, Imanaka K, Chida N, Nakachi K, Tak WY, Takayama T, et al. Phase III study of sorafenib after transarterial chemoembolisation in Japanese and Korean patients with unresectable hepatocellular carcinoma. Eur J Cancer. 2011;47:2117–27.

    Article  CAS  Google Scholar 

  44. Kudo M, Han G, Finn RS, Poon RTP, Blanc JF, Yan L, et al. Brivanib as adjuvant therapy to transarterial chemoembolization in patients with hepatocellular carcinoma: a randomized phase III trial. Hepatology. 2014;60:1697–707.

    Article  CAS  Google Scholar 

  45. Kudo M, Cheng AL, Park JW, Park JH, Liang PC, Hidaka H, et al. Orantinib versus placebo combined with transcatheter arterial chemoembolisation in patients with unresectable hepatocellular carcinoma (ORIENTAL): a randomised, double-blind, placebo-controlled, multicentre, phase 3 study. Lancet Gastroenterol Hepatol. 2018;3:37–46.

    Article  Google Scholar 

  46. Kudo M, Ueshima K, Ikeda M, Torimura T, Tanabe N, Aikata H, et al. Randomised, multicentre prospective trial of transarterial chemoembolisation (TACE) plus sorafenib as compared with TACE alone in patients with hepatocellular carcinoma: TACTICS trial. Gut. 2020;69:1492–501.

    Article  Google Scholar 

  47. Peng Z, Fan W, Zhu B, Li J, Kuang M. Lenvatinib combined with transarterial chemoembolization as first-line treatment of advanced hepatocellular carcinoma: a phase 3, multicenter, randomized controlled trial. J Clin Oncol. 2022;40:380–380.

    Article  Google Scholar 

  48. Pinato DJ, Cole T, Bengsch B, Tait P, Sayed AA, Abomeli F, et al. A phase Ib study of pembrolizumab following trans-arterial chemoembolization (TACE) in hepatocellular carcinoma (HCC): PETAL. Ann Oncol. 2019;30:v288.

    Article  Google Scholar 

  49. Vogel A, Saborowski A, Hinrichs J, Ettrich TJ, Ehmer U, Martens UM, et al. LBA37 IMMUTACE: a biomarker-orientated, multi center phase II AIO study of transarterial chemoembolization (TACE) in combination with nivolumab performed for intermediate stage hepatocellular carcinoma (HCC). Ann Oncol. 2021;32:S1312.

    Article  Google Scholar 

  50. Salem R, Lewandowski RJ, Mulcahy MF, Riaz A, Ryu RK, Ibrahim S, et al. Radioembolization for hepatocellular carcinoma using yttrium-90 microspheres: a comprehensive report of long-term outcomes. Gastroenterology. 2010;138:52–64.

    Article  CAS  Google Scholar 

  51. Mazzaferro V, Sposito C, Bhoori S, Romito R, Chiesa C, Morosi C, et al. Yttrium-90 radioembolization for intermediate-advanced hepatocellular carcinoma: a phase 2 study. Hepatology. 2013;57:1826–37.

    Article  CAS  Google Scholar 

  52. Rognoni C, Ciani O, Sommariva S, Facciorusso A, Tarricone R, Bhoori S, et al. Trans-arterial radioembolization in intermediate-advanced hepatocellular carcinoma: systematic review and meta-analyses. Oncotarget. 2016;7:72343–55.

    Article  Google Scholar 

  53. Salem R, Gordon AC, Mouli S, Hickey R, Kallini J, Gabr A, et al. Y90 radioembolization significantly prolongs time to progression compared with chemoembolization in patients with hepatocellular carcinoma. Gastroenterology. 2016;151:1155-1163.e2.

    Article  Google Scholar 

  54. Dhondt E, Lambert B, Hermie L, Huyck L, Vanlangenhove P, Geerts A, et al. 90Y radioembolization versus drug-eluting bead chemoembolization for unresectable hepatocellular carcinoma: results from the trace phase II randomized controlled trial. Radiology. 2022;303:699–710.

    Article  Google Scholar 

  55. Ricke J, Klümpen HJ, Amthauer H, Bargellini I, Bartenstein P, de Toni EN, et al. Impact of combined selective internal radiation therapy and sorafenib on survival in advanced hepatocellular carcinoma. J Hepatol. 2019;71:1164–74.

    Article  CAS  Google Scholar 

  56. Zhan C, Ruohoniemi D, Shanbhogue KP, Wei J, Welling TH, Gu P, et al. Safety of combined yttrium-90 radioembolization and immune checkpoint inhibitor immunotherapy for hepatocellular carcinoma. J Vasc Interv Radiol. 2020;31:25–34.

    Article  Google Scholar 

  57. Chow PKH, Poon DYH, Khin MW, Singh H, Han HS, Goh ASW, et al. Multicenter phase II study of sequential radioembolization-sorafenib therapy for inoperable hepatocellular carcinoma. PLoS ONE. 2014;9(3):e90909.

    Article  Google Scholar 

  58. Tai D, Loke K, Gogna A, Kaya NA, Tan SH, Hennedige T, et al. Radioembolisation with Y90-resin microspheres followed by nivolumab for advanced hepatocellular carcinoma (CA 209–678): a single arm, single centre, phase 2 trial. Lancet Gastroenterol Hepatol. 2021;6:1025–35.

    Article  Google Scholar 

  59. Lucatelli P, Burrel M, Guiu B, de Rubeis G, van Delden O, Helmberger T. CIRSE standards of practice on hepatic transarterial chemoembolisation. Cardiovasc Interv Radiol. 2021;44:1851–67.

    Article  Google Scholar 

  60. Stella M, Braat AJAT, van Rooij R, de Jong HWAM, Lam MGEH. Holmium-166 radioembolization: current status and future prospective. Cardiovasc Interv Radiol. 2022;45(11):1634–45.

    Article  Google Scholar 

  61. Rivoltini L, Bhoori S, Camisaschi C, Bergamaschi L, Lalli L, Frati P, et al. Y90-radioembolisation in hepatocellular carcinoma induces immune responses calling for early treatment with multiple checkpoint blockers. Gut. 2022. https://doi.org/10.1136/gutjnl-2021-326869

    Article  Google Scholar 

  62. Craciun L, De Wind R, Demetter P, Lucidi V, Bohlok A, Michiels S, et al. Retrospective analysis of the immunogenic effects of intra-arterial locoregional therapies in hepatocellular carcinoma: a rationale for combining selective internal radiation therapy (SIRT) and immunotherapy. BMC Cancer. 2020;20(1):1.

    Article  Google Scholar 

  63. Nijkamp MW, Van Der Bilt JDW, De Bruijn MT, Molenaar IQ, Voest EE, Van Diest PJ, et al. Accelerated perinecrotic outgrowth of colorectal liver metastases following radiofrequency ablation is a hypoxia-driven phenomenon. Ann Surg. 2009;249:814–23.

    Article  Google Scholar 

  64. Rozenblum N, Zeira E, Bulvik B, Gourevitch S, Yotvat H, Galun E, et al. Radiofrequency ablation: inflammatory changes in the periablative zone can induce global organ effects, including liver regeneration. Radiology. 2015;276:416–25.

    Article  Google Scholar 

  65. Nikfarjam M, Muralidharan V, Christophi C. Altered growth patterns of colorectal liver metastases after thermal ablation. Surgery. 2006;139:73–81.

    Article  Google Scholar 

  66. Rozenblum N, Zeira E, Scaiewicz V, Bulvik B, Gourevitch S, Yotvat H, et al. Oncogenesis: an “off-target” effect of radiofrequency ablation. Radiology. 2015;276:426–32.

    Article  Google Scholar 

  67. Markezana A, Ahmed M, Kumar G, Zorde-Khvalevsky E, Rozenblum N, Galun E, et al. Moderate hyperthermic heating encountered during thermal ablation increases tumor cell activity. Int J Hyperth. 2020;37:119–29.

    Article  CAS  Google Scholar 

  68. Ahmad F, Gravante G, Bhardwaj N, Strickland A, Basit R, West K, et al. Changes in interleukin-1β and 6 after hepatic microwave tissue ablation compared with radiofrequency, cryotherapy and surgical resections. Am J Surg. 2010;200:500–6.

    Article  CAS  Google Scholar 

  69. Velez E, Goldberg SN, Kumar G, Wang Y, Gourevitch S, Sosna J, et al. Hepatic thermal ablation: effect of device and heating parameters on local tissue reactions and distant tumor growth. Radiology. 2016;281:782–92.

    Article  Google Scholar 

  70. Della Corte A, Sallemi C, Ratti F, Monfardini L, Gusmini S, Cipriani F, et al. Retrospective evaluation and significance of neutrophil-to-lymphocyte ratio prior to and 1 month following microwave ablation of hepatocellular carcinoma. Cardiovasc Interv Radiol. 2022;30:1–1.

    Google Scholar 

  71. Mizukoshi E, Yamashita T, Arai K, Sunagozaka H, Ueda T, Arihara F, et al. Enhancement of tumor-associated antigen-specific T cell responses by radiofrequency ablation of hepatocellular carcinoma. Hepatology. 2013;57:1448–57.

    Article  CAS  Google Scholar 

Download references

Funding

No funding was received for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelo Della Corte.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to disclose.

Ethical Approval

Not applicable.

Informed Consent

Not applicable.

Consent to Publish

The patient included in Fig. 2 signed informed consent regarding publishing their data and diagnostic images.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Della Corte, A., Rimini, M., Steidler, S. et al. Combined Loco-Regional and Systemic Treatment Strategies for Hepatocellular Carcinoma: From Basics to New Developments. Cardiovasc Intervent Radiol 46, 175–186 (2023). https://doi.org/10.1007/s00270-022-03327-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00270-022-03327-4

Keywords

Navigation