Skip to main content
Log in

Cone Beam Computed Tomography (CBCT) in the Field of Interventional Oncology of the Liver

  • Review
  • Published:
CardioVascular and Interventional Radiology Aims and scope Submit manuscript

An Erratum to this article was published on 01 August 2015

Abstract

Cone beam computed tomography (CBCT) is an imaging modality that provides computed tomographic images using a rotational C-arm equipped with a flat panel detector as part of the Angiography suite. The aim of this technique is to provide additional information to conventional 2D imaging to improve the performance of interventional liver oncology procedures (intraarterial treatments such as chemoembolization or selective internal radiation therapy, and percutaneous tumor ablation). CBCT provides accurate tumor detection and targeting, periprocedural guidance, and post-procedural evaluation of treatment success. This technique can be performed during intraarterial or intravenous contrast agent administration with various acquisition protocols to highlight liver tumors, liver vessels, or the liver parenchyma. The purpose of this review is to present an extensive overview of published data on CBCT in interventional oncology of the liver, for both percutaneous ablation and intraarterial procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Racadio JM, Babic D, Homan R, et al. Live 3D Guidance in the Interventional Radiology Suite. AJR Am J Roentgenol. 2007;189(6):W357–64.

    Article  PubMed  Google Scholar 

  2. Orth RC, Wallace MJ, Kuo MD. Technology Assessment Committee of the Society of Interventional R C-arm cone-beam CT: general principles and technical considerations for use in interventional radiology. J Vasc Interv Radiol. 2008;19(6):814–20.

    Article  PubMed  Google Scholar 

  3. Wallace MJ, Kuo MD, Glaiberman C, et al. Three-dimensional C-arm cone-beam CT: applications in the interventional suite. J Vasc Interv Radiol. 2009;20(7 Suppl):S523–37.

    Article  PubMed  Google Scholar 

  4. Morimoto M, Numata K, Kondo M, et al. C-arm cone beam CT for hepatic tumor ablation under real-time 3D imaging. AJR Am J Roentgenol. 2010;194(5):W452–4.

    Article  PubMed  Google Scholar 

  5. Iwazawa J, Ohue S, Hashimoto N, Mitani T. Ablation margin assessment of liver tumors with intravenous contrast-enhanced C-arm computed tomography. World J Radiol. 2012;4(3):109–14.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cazzato RL, Buy X, Alberti N, Fonck M, Grasso RF, Palussiere J. Flat-panel cone-beam CT-guided radiofrequency ablation of very small (≤1.5 cm) liver tumors: technical note on a preliminary experience. Cardiovasc Interv Radiol. 2015;38(1):206–12.

    Article  Google Scholar 

  7. Abdel-Rehim M, Ronot M, Sibert A, Vilgrain V. Assessment of liver ablation using cone beam computed tomography. World J Gastroenterol. 2015;21(2):517–24.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Tacher V, Radaelli A, Lin M, Geschwind JF. How I do it: cone-beam CT during transarterial chemoembolization for liver cancer. Radiology. 2015;274(2):320–34.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Pellerin O, Lin M, Bhagat N, Shao W, Geschwind JF. Can C-arm cone-beam CT detect a micro-embolic effect after TheraSphere radioembolization of neuroendocrine and carcinoid liver metastasis? Cancer Biother Radiopharm. 2013;28(6):459–65.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Louie JD, Kothary N, Kuo WT, et al. Incorporating cone-beam CT into the treatment planning for yttrium-90 radioembolization. J Vasc Interv Radiol. 2009;20(5):606–13.

    Article  PubMed  Google Scholar 

  11. Lucatelli P, Corona M, Argiro R, et al. Impact of 3D rotational angiography on liver embolization procedures: review of technique and applications. Cardiovasc Interv Radiol. 2015;38(3):523–35.

    Article  Google Scholar 

  12. Koelblinger C, Schima W, Berger-Kulemann V, et al. C-arm CT during hepatic arteriography tumour-to-liver contrast: intraindividual comparison of three different contrast media application protocols. Eur Radiol. 2013;23(4):938–42.

    Article  PubMed  Google Scholar 

  13. Loffroy R, Lin M, Rao P, et al. Comparing the detectability of hepatocellular carcinoma by C-arm dual-phase cone-beam computed tomography during hepatic arteriography with conventional contrast-enhanced magnetic resonance imaging. Cardiovasc Interv Radiol. 2012;35(1):97–104.

    Article  Google Scholar 

  14. Lee IJ, Chung JW, Yin YH, et al. Cone-beam CT hepatic arteriography in chemoembolization for hepatocellular carcinoma: angiographic image quality and its determining factors. J Vasc Interv Radiol. 2014;25(9):1369–79 quiz 79- e1.

    Article  PubMed  Google Scholar 

  15. Bruix J. Management of hepatocellular carcinoma: an update. Hepatology. 2011;53(3):1020–2.

    Article  PubMed  PubMed Central  Google Scholar 

  16. European Association for the Study of the L, European Organisation For R, Treatment Of C. EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol. 2012;56(4):908–43.

    Article  Google Scholar 

  17. Vogl TJ, Naguib NN, Zangos S, Eichler K, Hedayati A, Nour-Eldin NE. Liver metastases of neuroendocrine carcinomas: interventional treatment via transarterial embolization, chemoembolization and thermal ablation. Eur J Radiol. 2009;72(3):517–28.

    Article  PubMed  Google Scholar 

  18. Steward MJ, Warbey VS, Malhotra A, Caplin ME, Buscombe JR. Yu D Neuroendocrine tumors: role of interventional radiology in therapy. RadioGraphics. 2008;28(4):1131–45.

    Article  PubMed  Google Scholar 

  19. Martin RCG, Joshi J, Robbins K, Tomalty D, O’Hara R, Tatum C. Transarterial chemoembolization of metastatic colorectal carcinoma with drug-eluting beads, irinotecan (DEBIRI): multi-institutional registry. J Oncol. 2009;2009:1–6.

    Article  Google Scholar 

  20. Zechlinski JJ, Rilling WS. Transarterial therapies for the treatment of intrahepatic cholangiocarcinoma. Semin Interv Radiol. 2013;30(1):21–7.

    Article  Google Scholar 

  21. Lammer J, Malagari K, Vogl T, et al. Prospective randomized study of doxorubicin-eluting-bead embolization in the treatment of hepatocellular carcinoma: results of the PRECISION V study. Cardiovasc Interv Radiol. 2010;33(1):41–52.

    Article  Google Scholar 

  22. Martin R, Geller D, Espat J, et al. Safety and efficacy of trans arterial chemoembolization with drug-eluting beads in hepatocellular cancer: a systematic review. Hepatogastroenterology. 2012;59(113):255–60.

    PubMed  Google Scholar 

  23. Lencioni R, De Baere T, Burrel M, et al. Transcatheter Treatment of Hepatocellular Carcinoma with Doxorubicin-loaded DC Bead (DEBDOX): technical recommendations. Cardiovasc Interv Radiol. 2011;35(5):980–5.

    Article  Google Scholar 

  24. Bouvier A, Ozenne V, Aubé C, et al. Transarterial chemoembolisation: effect of selectivity on tolerance, tumour response and survival. Eur Radiol. 2011;21(8):1719–26.

    Article  PubMed  Google Scholar 

  25. Golfieri R, Cappelli A, Cucchetti A, et al. Efficacy of selective transarterial chemoembolization in inducing tumor necrosis in small (<5 cm) hepatocellular carcinomas. Hepatology. 2011;53(5):1580–9.

    Article  PubMed  Google Scholar 

  26. Kakeda S, Korogi Y, Ohnari N, et al. Usefulness of cone-beam volume CT with flat panel detectors in conjunction with catheter angiography for transcatheter arterial embolization. J Vasc Interv Radiol. 2007;18(12):1508–16.

    Article  PubMed  Google Scholar 

  27. Tognolini A, Louie JD, Hwang GL, Hofmann LV, Sze DY, Kothary N. Utility of C-arm CT in patients with hepatocellular carcinoma undergoing transhepatic arterial chemoembolization. J Vasc Interv Radiol. 2010;21(3):339–47.

    Article  PubMed  Google Scholar 

  28. Miyayama S, Yamashiro M, Hashimoto M, et al. Comparison of local control in transcatheter arterial chemoembolization of hepatocellular carcinoma ≤6 cm with or without intraprocedural monitoring of the embolized area using cone-beam computed tomography. Cardiovasc Interv Radiol. 2014;37(2):388–95.

    Article  Google Scholar 

  29. Iwazawa J, Ohue S, Hashimoto N, Muramoto O, Mitani T. Survival after C-arm CT-assisted chemoembolization of unresectable hepatocellular carcinoma. Eur J Radiol. 2012;81(12):3985–92.

    Article  PubMed  Google Scholar 

  30. Hirota S, Nakao N, Yamamoto S, et al. Cone-beam CT with flat-panel-detector digital angiography system: early experience in abdominal interventional procedures. Cardiovasc Interv Radiol. 2006;29(6):1034–8.

    Article  Google Scholar 

  31. Meyer BC, Frericks BB, Albrecht T, Wolf KJ, Wacker FK. Contrast-enhanced abdominal angiographic CT for intra-abdominal tumor embolization: a new tool for vessel and soft tissue visualization. Cardiovasc Interv Radiol. 2007;30(4):743–9.

    Article  Google Scholar 

  32. Meyer BC, Frericks BB, Voges M, et al. Visualization of hypervascular liver lesions During TACE: comparison of angiographic C-arm CT and MDCT. AJR Am J Roentgenol. 2008;190(4):W263–9.

    Article  PubMed  Google Scholar 

  33. Miyayama S, Matsui O, Yamashiro M, et al. Detection of hepatocellular carcinoma by CT during arterial portography using a cone-beam CT technology: comparison with conventional CTAP. Abdom Imaging. 2009;34(4):502–6.

    Article  PubMed  Google Scholar 

  34. Miyayama S, Yamashiro M, Okuda M, et al. Usefulness of cone-beam computed tomography during ultraselective transcatheter arterial chemoembolization for small hepatocellular carcinomas that cannot be demonstrated on angiography. Cardiovasc Interv Radiol. 2009;32(2):255–64.

    Article  Google Scholar 

  35. Iwazawa J, Ohue S, Hashimoto N, Abe H, Hamuro M, Mitani T. Detection of hepatocellular carcinoma: comparison of angiographic C-arm CT and MDCT. AJR Am J Roentgenol. 2010;195(4):882–7.

    Article  PubMed  Google Scholar 

  36. Lin M, Loffroy R, Noordhoek N, et al. Evaluating tumors in transcatheter arterial chemoembolization (TACE) using dual-phase cone-beam CT. Minim Invasive Ther Allied Technol. 2011;20(5):276–81.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Higashihara H, Osuga K, Onishi H, et al. Diagnostic accuracy of C-arm CT during selective transcatheter angiography for hepatocellular carcinoma: comparison with intravenous contrast-enhanced, biphasic, dynamic MDCT. Eur Radiol. 2012;22(4):872–9.

    Article  PubMed  Google Scholar 

  38. Miyayama S, Yamashiro M, Hashimoto M, et al. Identification of small hepatocellular carcinoma and tumor-feeding branches with cone-beam CT guidance technology during transcatheter arterial chemoembolization. J Vasc Interv Radiol. 2013;24(4):501–8.

    Article  PubMed  Google Scholar 

  39. Tacher V, Lin M, Chao M, et al. Semiautomatic volumetric tumor segmentation for hepatocellular carcinoma: comparison between C-arm cone beam computed tomography and MRI. Acad Radiol. 2013;20(4):446–52.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Schernthaner RE, Lin M, Duran R, Chapiro J, Wang Z, Geschwind JF. Delayed-phase cone-beam ct improves detectability of intrahepatic cholangiocarcinoma during conventional transarterial chemoembolization. Cardiovasc Interv Radiol. 2014. doi:10.1007/s00270-014-1026-7.

    Google Scholar 

  41. Lee IJ, Chung JW, Yin YH, et al. Cone-beam computed tomography (CBCT) hepatic arteriography in chemoembolization for hepatocellular carcinoma: performance depicting tumors and tumor feeders. Cardiovasc Interv Radiol. 2015. doi:10.1007/s00270-015-1055-x.

    Google Scholar 

  42. Miyayama S, Yamashiro M, Okuda M, et al. Detection of corona enhancement of hypervascular hepatocellular carcinoma by C-arm dual-phase cone-beam CT during hepatic arteriography. Cardiovasc Interv Radiol. 2011;34(1):81–6.

    Article  Google Scholar 

  43. Paul J, Mbalisike EC, Vogl TJ. Ultrafast cone-beam computed tomography imaging and postprocessing data during image-guided therapeutic practice. Eur Radiol. 2014;24(11):2866–75.

    Article  PubMed  Google Scholar 

  44. Iwazawa J, Ohue S, Mitani T, et al. Identifying feeding arteries during TACE of hepatic tumors: comparison of C-arm CT and digital subtraction angiography. AJR Am J Roentgenol. 2009;192(4):1057–63.

    Article  PubMed  Google Scholar 

  45. Minami Y, Yagyu Y, Murakami T, Kudo M. Tracking navigation imaging of transcatheter arterial chemoembolization for hepatocellular carcinoma using three-dimensional cone-beam CT angiography. Liver Cancer. 2014;3(1):53–61.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Virmani S, Ryu RK, Sato KT, et al. Effect of C-arm angiographic CT on transcatheter arterial chemoembolization of liver tumors. J Vasc Interv Radiol. 2007;18(10):1305–9.

    Article  PubMed  Google Scholar 

  47. Miyayama S, Yamashiro M, Hashimoto M, et al. Blood supply of the main bile duct from the caudate artery and medial subsegmental artery of the hepatic artery: evaluation using images obtained during transcatheter arterial chemoembolization for hepatocellular carcinoma. Hepatol Res. 2013;43(11):1175–81.

    Article  PubMed  Google Scholar 

  48. Deschamps F, Solomon SB, Thornton RH, et al. Computed analysis of three-dimensional cone-beam computed tomography angiography for determination of tumor-feeding vessels during chemoembolization of liver tumor: a pilot study. Cardiovasc Interv Radiol. 2010. doi:10.1007/s00270-010-9846-6.

    Google Scholar 

  49. Wang X, Shah RP, Maybody M, et al. Cystic artery localization with a three-dimensional angiography vessel tracking system compared with conventional two-dimensional angiography. J Vasc Interv Radiol. 2011;22(10):1414–9.

    Article  PubMed  Google Scholar 

  50. Kim HC, Chung JW, An S, et al. Left inferior phrenic artery feeding hepatocellular carcinoma: angiographic anatomy using C-arm CT. AJR Am J Roentgenol. 2009;193(4):W288–94.

    Article  PubMed  Google Scholar 

  51. Kim HC, Chung JW, Lee IJ, et al. Intercostal artery supplying hepatocellular carcinoma: demonstration of a tumor feeder by C-arm CT and multidetector row CT. Cardiovasc Interv Radiol. 2011;34(1):87–91.

    Article  Google Scholar 

  52. Forner A, Ayuso C, Varela M, et al. Evaluation of tumor response after locoregional therapies in hepatocellular carcinoma: are response evaluation criteria in solid tumors reliable? Cancer. 2009;115(3):616–23.

    Article  PubMed  Google Scholar 

  53. Lencioni R, Llovet JM. Modified RECIST (mRECIST) assessment for hepatocellular carcinoma. Semin Liver Dis. 2010;30(1):52–60.

    Article  PubMed  CAS  Google Scholar 

  54. Kwan SW, Fidelman N, Ma E, Kerlan RK Jr, Yao FY. Imaging predictors of the response to transarterial chemoembolization in patients with hepatocellular carcinoma: a radiological-pathological correlation. Liver Transpl. 2012;18(6):727–36.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Shim JH, Han S, Shin YM, et al. Optimal measurement modality and method for evaluation of responses to transarterial chemoembolization of hepatocellular carcinoma based on enhancement criteria. J Vasc Interv Radiol. 2013;24(3):316–25.

    Article  PubMed  Google Scholar 

  56. Loffroy R, Lin M, Yenokyan G, et al. Intraprocedural C-arm dual-phase cone-beam CT: can it be used to predict short-term response to TACE with drug-eluting beads in patients with hepatocellular carcinoma? Radiology. 2013;266(2):636–48.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Jeon UB, Lee JW, Choo KS, et al. Iodized oil uptake assessment with cone-beam CT in chemoembolization of small hepatocellular carcinomas. World J Gastroenterol. 2009;15(46):5833–7.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Sun JH, Wang LG, Bao HW, et al. Usefulness of C-arm angiographic computed tomography for detecting iodized oil retention during transcatheter arterial chemoembolization of hepatocellular carcinoma. J Int Med Res. 2010;38(4):1259–65.

    Article  PubMed  Google Scholar 

  59. Iwazawa J, Ohue S, Kitayama T, Sassa S, Mitani T. C-arm CT for assessing initial failure of iodized oil accumulation in chemoembolization of hepatocellular carcinoma. AJR Am J Roentgenol. 2011;197(2):W337–42.

    Article  PubMed  Google Scholar 

  60. Peynircioglu B, Hizal M, Cil B, et al. Quantitative liver tumor blood volume measurements by a C-arm CT post-processing software before and after hepatic arterial embolization therapy: comparison with MDCT perfusion. Diagn Interv Radiol. 2015;21(1):71–7.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Riaz A, Kulik LM, Mulcahy MF, Lewandowski RJ, Salem R. Yttrium-90 radioembolization in the management of liver malignancies. Semin Oncol. 2010;37(2):94–101.

    Article  PubMed  Google Scholar 

  62. Denys A, Pracht M, Duran R, et al. How to prepare a patient for transarterial radioembolization? A practical guide. Cardiovasc Interv Radiol. 2015. doi:10.1007/s00270-015-1071-x.

    Google Scholar 

  63. Mahnken AH, Spreafico C, Maleux G, Helmberger T, Jakobs TF. Standards of practice in transarterial radioembolization. Cardiovasc Interv Radiol. 2013;36(3):613–22.

    Article  Google Scholar 

  64. Kim YS, Rhim H, Cho OK, Koh BH, Kim Y. Intrahepatic recurrence after percutaneous radiofrequency ablation of hepatocellular carcinoma: analysis of the pattern and risk factors. Eur J Radiol. 2006;59(3):432–41.

    Article  PubMed  CAS  Google Scholar 

  65. Nakazawa T, Kokubu S, Shibuya A, et al. Radiofrequency ablation of hepatocellular carcinoma: correlation between local tumor progression after ablation and ablative margin. AJR Am J Roentgenol. 2007;188(2):480–8.

    Article  PubMed  Google Scholar 

  66. Mulier S, Ni Y, Jamart J, Ruers T, Marchal G, Michel L. Local recurrence after hepatic radiofrequency coagulation: multivariate meta-analysis and review of contributing factors. Ann Surg. 2005;242(2):158–71.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Clasen S, Pereira PL. Magnetic resonance guidance for radiofrequency ablation of liver tumors. J Magn Reson Imaging. 2008;27(2):421–33.

    Article  PubMed  Google Scholar 

  68. Solomon SB, Silverman SG. Imaging in interventional oncology. Radiology. 2010;257(3):624–40.

    Article  PubMed  Google Scholar 

  69. Crocetti L, Della Pina C, Cioni D, Lencioni R. Peri-intraprocedural imaging: US, CT, and MRI. Abdom Imaging. 2011;36(6):648–60.

    Article  PubMed  Google Scholar 

  70. Guibal A, Bertin C, Egels S, Savier E, Grenier PA, Lucidarme O. Contrast-enhanced ultrasound (CEUS) follow-up after radiofrequency ablation or cryoablation of focal liver lesions: treated-area patterns and their changes over time. Eur Radiol. 2013;23(5):1392–400.

    Article  PubMed  Google Scholar 

  71. Hakime A, Deschamps F, De Carvalho EG, Teriitehau C, Auperin A, De Baere T. Clinical evaluation of spatial accuracy of a fusion imaging technique combining previously acquired computed tomography and real-time ultrasound for imaging of liver metastases. Cardiovasc Interv Radiol. 2011;34(2):338–44.

    Article  Google Scholar 

  72. Iwazawa J, Hashimoto N, Mitani T, Ohue S. Fusion of intravenous contrast-enhanced C-arm CT and pretreatment imaging for ablation margin assessment of liver tumors: a preliminary study. Indian J Radiol Imaging. 2012;22(4):251–3.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Kothary N, Abdelmaksoud MH, Tognolini A, et al. Imaging guidance with C-arm CT: prospective evaluation of its impact on patient radiation exposure during transhepatic arterial chemoembolization. J Vasc Interv Radiol. 2011;22(11):1535–43.

    Article  PubMed  Google Scholar 

  74. Schulz B, Heidenreich R, Heidenreich M, et al. Radiation exposure to operating staff during rotational flat-panel angiography and C-arm cone beam computed tomography (CT) applications. Eur J Radiol. 2012;81(12):4138–42.

    Article  PubMed  Google Scholar 

  75. Suzuki S, Yamaguchi I, Kidouchi T, Yamamoto A, Masumoto T, Ozaki Y. Evaluation of effective dose during abdominal three-dimensional imaging for three flat-panel-detector angiography systems. Cardiovasc Interv Radiol. 2011;34(2):376–82.

    Article  Google Scholar 

  76. Kwok YM, Irani FG, Tay KH, Yang CC, Padre CG, Tan BS. Effective dose estimates for cone beam computed tomography in interventional radiology. Eur Radiol. 2013;23(11):3197–204.

    Article  PubMed  CAS  Google Scholar 

  77. Schegerer AA, Lechel U, Ritter M, Weisser G, Fink C, Brix G. Dose and image quality of cone-beam computed tomography as compared with conventional multislice computed tomography in abdominal imaging. Invest Radiol. 2014;49(10):675–84.

    Article  PubMed  Google Scholar 

  78. Suk Oh J, Jong Chun H, Gil Choi B, Giu Lee H. Transarterial chemoembolization with drug-eluting beads in hepatocellular carcinoma: usefulness of contrast saturation features on cone-beam computed tomography imaging for predicting short-term tumor response. J Vasc Interv Radiol. 2013;24(4):483–9.

    Article  PubMed  Google Scholar 

  79. Chen R, Geschwind JF, Wang Z, Tacher V, Lin M. Quantitative assessment of lipiodol deposition after chemoembolization: comparison between cone-beam CT and multidetector CT. J Vasc Interv Radiol. 2013;24(12):1837–44.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxime Ronot.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Does not apply.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bapst, B., Lagadec, M., Breguet, R. et al. Cone Beam Computed Tomography (CBCT) in the Field of Interventional Oncology of the Liver. Cardiovasc Intervent Radiol 39, 8–20 (2016). https://doi.org/10.1007/s00270-015-1180-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00270-015-1180-6

Keywords

Navigation