Skip to main content
Log in

3D Bioprinting-Based Dopamine-Coupled Flexible Material for Nasal Cartilage Repair

  • Original Articles
  • Basic Science/Experimental
  • Published:
Aesthetic Plastic Surgery Aims and scope Submit manuscript

Abstract

Introduction

Since 3D printing can be used to design implants according to the specific conditions of patients, it has become an emerging technology in tissue engineering and regenerative medicine. How to improve the mechanical, elastic and adhesion properties of 3D-printed photocrosslinked hydrogels is the focus of cartilage tissue repair and reconstruction research.

Materials and Methods

We established a strategy for toughening hydrogels by mixing GelMA-DOPA (GD), which is prepared by coupling dopamine (DA) with GelMA, with HAMA, bacterial cellulose (BC) to produce composite hydrogels (HB–GD). HB–GD hydrogel scaffolds were characterized in vitro by scanning electron microscopy (SEM), Young’s modulus, swelling property and rheological property tests. And biocompatibility and chondrogenic ability were tested by live/dead staining, DNA quantitative analysis and immunofluorescence staining. Combined with 3D bioprinting technology, mouse chondrocytes (ADTC5) were added to form a biological chain to construct an in vitro model, and the feasibility of the model for nasal cartilage regeneration was verified by cytology evaluation.

Results

With the increase of GD concentration, the toughness of the composite hydrogel increased (47.0 ± 2.7 kPa (HB–5GD)–158 ± 3.2 kPa (HB–20GD)), and it had excellent swelling properties, rheological properties and printing properties. The HB–GD composite hydrogel promoted the proliferation and differentiation of ATDC5. Cells in 3D printed scaffolds had higher survival rates (> 95%) and better protein expression than the encapsulated cultures.

Conclusion

The HB–10GD hydrogel can be made into a porous scaffold with precise shape, good internal pore structure, high mechanical strength and good swelling rate through extrusion 3D printing.

No Level Assigned

This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Schenker H, Wild M, Rath B, Tingart M, Driessen A, Quack V, Betsch M (2017) Aktuelle Übersicht knorpelregenerativer Verfahren. Orthopade 46(11):907–913

    Article  CAS  PubMed  Google Scholar 

  2. Domayer SE, Welsch GH, Dorotka R, Mamisch TC, Marlovits S, Szomolanyi P, Trattnig S (2008) MRI monitoring of cartilage repair in the knee: a review. Semin Musculoskelet Radiol 12(4):302–317

  3. Makris EA, Gomoll AH, Malizos KN, Hu JC, Athanasiou KA (2015) Repair and tissue engineering techniques for articular cartilage. Nat Rev Rheumatol 11(1):21–34

    Article  CAS  PubMed  Google Scholar 

  4. Huey DJ, Hu JC, Athanasiou KA (2012) Unlike bone, cartilage regeneration remains elusive. Science 338(6109):917–921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kundu J, Shim JH, Jang J, Kim SW, Cho DW (2015) An additive manufacturing-based PCL–alginate–chondrocyte bioprinted scaffold for cartilage tissue engineering. J Tissue Eng Regen Med 9(11):1286–1297

    Article  CAS  PubMed  Google Scholar 

  6. Garg T, Singh O, Arora S, Murthy R (2012) Scaffold: a novel carrier for cell and drug delivery. Crit Rev™ Ther Drug Carr Syst 29(1):1–63

    Article  CAS  Google Scholar 

  7. Shi Y, Tan X, Sun H, Char S (2021) Experience with autologous nasal septum cartilage combined with conchal cartilage in nasal tip reconstruction. Ann Plast Surg 86(3S):S189–S193

    Article  CAS  PubMed  Google Scholar 

  8. Cao Y, Sang S, An Y, Xiang C, Li Y, Zhen Y (2021) Progress of 3D printing techniques for nasal cartilage regeneration. Aesthet Plast Surg 46:1–18

    CAS  Google Scholar 

  9. Ruiz-Cantu L, Gleadall A, Faris C, Segal J, Shakesheff K, Yang J (2020) Multi-material 3D bioprinting of porous constructs for cartilage regeneration. Mater Sci Eng C 109:110578

    Article  CAS  Google Scholar 

  10. Wei J, Zhang J, Herrler T, Wei S, Chen Q, Li Q, He J, Dai C (2020) Correction of severe short nose using a costal cartilage extension framework. Ann Plast Surg 85(5):472–475

    Article  CAS  PubMed  Google Scholar 

  11. Sang S, Ma Z, Cao Y, Shen Z, Duan J, Zhang Y, Wang L, An Y, Mao X, An Y (2023) BC enhanced photocurable hydrogel based on 3D bioprinting for nasal cartilage repair. Int J Polym Mater Polym Biomater 72(9):702–713

    Article  CAS  Google Scholar 

  12. Gan D, Xu T, Xing W, Wang M, Fang J, Wang K, Ge X, Chan CW, Ren F, Tan H (2019) Mussel-inspired dopamine oligomer intercalated tough and resilient gelatin methacryloyl (GelMA) hydrogels for cartilage regeneration. J Mater Chem B 7(10):1716–1725

    Article  CAS  PubMed  Google Scholar 

  13. Sun M, Sun X, Wang Z, Guo S, Yu G, Yang H (2018) Synthesis and properties of gelatin methacryloyl (GelMA) hydrogels and their recent applications in load-bearing tissue. Polymers 10(11):1290

    Article  PubMed  PubMed Central  Google Scholar 

  14. Camci-Unal G, Cuttica D, Annabi N, Demarchi D, Khademhosseini A (2013) Synthesis and characterization of hybrid hyaluronic acid-gelatin hydrogels. Biomacromol 14(4):1085–1092

    Article  CAS  Google Scholar 

  15. Mouser VH, Levato R, Mensinga A, Dhert WJ, Gawlitta D, Malda J (2020) Bio-ink development for three-dimensional bioprinting of hetero-cellular cartilage constructs. Connect Tissue Res 61(2):137–151

    Article  CAS  PubMed  Google Scholar 

  16. Fan Y, Yue Z, Lucarelli E, Wallace GG (2020) Hybrid printing using cellulose nanocrystals reinforced GelMA/HAMA hydrogels for improved structural integration. Adv Healthcare Mater 9(24):2001410

    Article  CAS  Google Scholar 

  17. Xue L, Deng T, Guo R, Peng L, Guo J, Tang F, Lin J, Jiang S, Lu H, Liu X (2022) A composite hydrogel containing mesoporous silica nanoparticles loaded with artemisia argyi extract for improving chronic wound healing. Front Bioeng Biotechnol 10:825339

    Article  PubMed  PubMed Central  Google Scholar 

  18. Xia H, Zhao D, Zhu H, Hua Y, Xiao K, Xu Y, Liu Y, Chen W, Liu Y, Zhang W (2018) Lyophilized scaffolds fabricated from 3D-printed photocurable natural hydrogel for cartilage regeneration. ACS Appl Mater Interfaces 10(37):31704–31715

    Article  CAS  PubMed  Google Scholar 

  19. Yin N, Stilwell MD, Santos TM, Wang H, Weibel DB (2015) Agarose particle-templated porous bacterial cellulose and its application in cartilage growth in vitro. Acta Biomater 12:129–138

    Article  CAS  PubMed  Google Scholar 

  20. Iguchi M, Yamanaka S, Budhiono A (2000) Bacterial cellulose—a masterpiece of nature’s arts. J Mater Sci 35(2):261–270

    Article  CAS  Google Scholar 

  21. Petersen N, Gatenholm P (2011) Bacterial cellulose-based materials and medical devices: current state and perspectives. Appl Microbiol Biotechnol 91:1277–1286

    Article  CAS  PubMed  Google Scholar 

  22. Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50(24):5438–5466

    Article  CAS  Google Scholar 

  23. Trapani A, Corbo F, Agrimi G, Ditaranto N, Cioffi N, Perna F, Quivelli A, Stefàno E, Lunetti P, Muscella A (2021) Oxidized alginate dopamine conjugate In Vitro Characterization for Nose-to-Brain Delivery Application. Materials 14(13):3495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cheng H, Yue K, Kazemzadeh-Narbat M, Liu Y, Khalilpour A, Li B, Zhang YS, Annabi N, Khademhosseini A (2017) Mussel-inspired multifunctional hydrogel coating for prevention of infections and enhanced osteogenesis. ACS Appl Mater Interfaces 9(13):11428–11439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Foyt DA, Norman MD, Yu TT, Gentleman E (2018) Exploiting advanced hydrogel technologies to address key challenges in regenerative medicine. Adv Healthcare Mater 7(8):1700939

    Article  Google Scholar 

  26. Montazerian H, Baidya A, Haghniaz R, Davoodi E, Ahadian S, Annabi N, Khademhosseini A, Weiss PS (2021) Stretchable and bioadhesive gelatin methacryloyl-based hydrogels enabled by in situ dopamine polymerization. ACS Appl Mater Interfaces 13(34):40290–40301

    Article  CAS  PubMed  Google Scholar 

  27. Fan C, Fu J, Zhu W, Wang D-A (2016) A mussel-inspired double-crosslinked tissue adhesive intended for internal medical use. Acta Biomater 33:51–63

    Article  CAS  PubMed  Google Scholar 

  28. Baghdasarian S (2020) Engineering a highly adhesive and hemostatic sealant for soft tissues. University of California, Los Angeles

    Google Scholar 

  29. Cao Y, Cheng P, Sang S, Xiang C, An Y, Wei X, Yan Y, Li P (2021) 3D printed PCL/GelMA biphasic scaffold boosts cartilage regeneration using co-culture of mesenchymal stem cells and chondrocytes: in vivo study. Mater Des 210:110065

    Article  CAS  Google Scholar 

  30. Cao Y, Cheng P, Sang S, Xiang C, An Y, Wei X, Shen Z, Zhang Y, Li P (2021) Mesenchymal stem cells loaded on 3D-printed gradient poly (ε-caprolactone)/methacrylated alginate composite scaffolds for cartilage tissue engineering. Regen. Biomater 8(3):rbab019

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ouyang L, Yao R, Zhao Y, Sun W (2016) Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Biofabrication 8(3):035020

    Article  PubMed  Google Scholar 

  32. Zhang C, Wu B, Zhou Y, Zhou F, Liu W, Wang Z (2020) Mussel-inspired hydrogels: from design principles to promising applications. Chem Soc Rev 49(11):3605–3637

    Article  CAS  PubMed  Google Scholar 

  33. Ahn BK (2017) Perspectives on mussel-inspired wet adhesion. J Am Chem Soc 139(30):10166–10171

    Article  CAS  PubMed  Google Scholar 

  34. Le TMD, Duong HTT, Thambi T, Giang Phan V, Jeong JH, Lee DS (2018) Bioinspired pH-and temperature-responsive injectable adhesive hydrogels with polyplexes promotes skin wound healing. Biomacromol 19(8):3536–3548

    Article  CAS  Google Scholar 

  35. Nakatsuka N, Hasani-Sadrabadi MM, Cheung KM, Young TD, Bahlakeh G, Moshaverinia A, Weiss PS, Andrews AM (2018) Polyserotonin nanoparticles as multifunctional materials for biomedical applications. ACS Nano 12(5):4761–4774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cheng H, Shi Z, Yue K, Huang X, Xu Y, Gao C, Yao Z, Zhang YS, Wang J (2021) Sprayable hydrogel dressing accelerates wound healing with combined reactive oxygen species-scavenging and antibacterial abilities. Acta Biomater 124:219–232

    Article  CAS  PubMed  Google Scholar 

  37. Lien S-M, Ko L-Y, Huang T-J (2009) Effect of pore size on ECM secretion and cell growth in gelatin scaffold for articular cartilage tissue engineering. Acta Biomater 5(2):670–679

    Article  CAS  PubMed  Google Scholar 

  38. Lewis PL, Green RM, Shah RN (2018) 3D-printed gelatin scaffolds of differing pore geometry modulate hepatocyte function and gene expression. Acta Biomater 69:63–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hoffman AS (2012) Hydrogels for biomedical applications. Adv Drug Deliv Rev 64:18–23

    Article  Google Scholar 

  40. Nagarajan N, Dupret-Bories A, Karabulut E, Zorlutuna P, Vrana NE (2018) Enabling personalized implant and controllable biosystem development through 3D printing. Biotechnol Adv 36(2):521–533

    Article  CAS  PubMed  Google Scholar 

  41. Wang X, Wei C, Cao B, Jiang L, Hou Y, Chang J (2018) Fabrication of multiple-layered hydrogel scaffolds with elaborate structure and good mechanical properties via 3D printing and ionic reinforcement. ACS Appl Mater Interfaces 10(21):18338–18350

    Article  CAS  PubMed  Google Scholar 

  42. Roehm KD, Madihally SV (2018) Bioprinted chitosan-gelatin thermosensitive hydrogels using an inexpensive 3D printer. Biofabrication 10(1):015002

    Article  Google Scholar 

  43. Zhang Q, Bei H-P, Zhao M, Dong Z, Zhao X (2022) Shedding light on 3D printing: Printing photo-crosslinkable constructs for tissue engineering. Biomaterials 286:121566

    Article  CAS  PubMed  Google Scholar 

  44. Lavernia L, Brown WE, Wong BJ, Hu JC, Athanasiou KA (2019) Toward tissue-engineering of nasal cartilages. Acta Biomater 88:42–56

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors declare that they have no conflicts of interest.

Funding

This work was supported by the National Natural Science Foundation of China (No. 51975400, No. 62031022), Shanxi Provincial Key Medical Scientific Research Project (2020XM06), Shanxi Provincial Basic Research Project (No. 202103021221006, No. 202103021223040), Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (No. 2021L044), Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering (2022SX-TD026) and the Key Research and Development Program of Shanxi Province (202202010101004).

Author information

Authors and Affiliations

Authors

Contributions

WDJ and ZWM prepared the materials, ZZS and ML conducted material performance tests, WDJ, PYH and ZWM builded 3D printing models, WDJ and ZXL performed live and dead staining, immunofluorescence staining and chondrogenic ability analysis, WDJ and ZXL designed the study and drafted the manuscript, YYC and HLZ conducted the review and editing of the manuscript, XG provided resources and supervision, SBS gave final approval to the pending publication. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Shengbo Sang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical Approval

Yes.

Consent to Participate

Yes.

Human and Animal Rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

For this type of study, formal consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, W., Liu, Z., Ma, Z. et al. 3D Bioprinting-Based Dopamine-Coupled Flexible Material for Nasal Cartilage Repair. Aesth Plast Surg (2024). https://doi.org/10.1007/s00266-024-03982-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00266-024-03982-7

Keywords

Navigation