Skip to main content

Advertisement

Log in

Rapamycin and 3-Methyladenine Influence the Apoptosis, Senescence, and Adipogenesis of Human Adipose-Derived Stem Cells by Promoting and Inhibiting Autophagy: An In Vitro and In Vivo Study

  • Original Article
  • Basic Science/Experimental
  • Published:
Aesthetic Plastic Surgery Aims and scope Submit manuscript

Abstract

Objective

We aimed to clarify the changes in apoptosis, proliferation, senescence, and adipogenesis after promoting and inhibiting autophagy in adipose-derived stem cells (ADSCs) by rapamycin and 3-methyladenine in vitro and in vivo.

Methods

After rapamycin and 3-methyladenine pretreatment, ADSC autophagy was detected by immunofluorescence for LC3, RT-PCR for ATG genes, and western blotting (WB) for the LC3 II/I and p62 proteins. TUNEL staining, PCR of BAX, and WB of Caspase-3 were preformed to assess ADSC apoptosis. The adipogenesis of ADSCs was evaluated by Oil red O staining and PCR of PPAR-γ. CCK8 assays were conducted to detect proliferation. Senescence was tested by Sa-β-gal staining and PCR of the P16/ 19/21 genes. Moreover, the mass and volume retention rate were determined, and perilipin and CD31 staining were performed in vivo.

Results

Rapamycin and 3-methyladenine pretreatment increased and decreased autophagy of ADSCs, respectively, under normal and oxygen-glucose deprivation conditions. Apoptosis and senescence of ADSCs were decreased, and adipogenesis was increased along with the upregulation of autophagy. However, the proliferation of ADSCs was inhibited after either rapamycin or 3-methyladenine pretreatment. In vivo, the volume and mass retention rate and the angiogenesis of the grafts were also improved after rapamycin pretreatment.

Conclusions

Rapamycin pretreatment reduced apoptosis, delayed senescence, and promoted adipogenesis of ADSCs. These effects were inhibited by 3-methyladenine, indicating that the changes may be mediated by autophagy. Moreover, the survival rate and angiogenesis of the grafts were increased after upregulation of ADSC autophagy in vivo, which may help improve the efficiency of clinical fat transplantation.

No Level Assigned

This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Yu NZ, Huang JZ, Zhang H, Wang Y, Wang XJ, Zhao R, Bai M, Long X (2015) A systemic review of autologous fat grafting survival rate and related severe complications. Chin Med J (Engl) 128(9):1245–1251. https://doi.org/10.4103/0366-6999.156142

    Article  Google Scholar 

  2. Zocchi ML, Zuliani F (2008) Bicompartmental breast lipostructuring. Aesthetic Plast Surg 32(2):313–328. https://doi.org/10.1007/s00266-007-9089-3

    Article  CAS  PubMed  Google Scholar 

  3. Tanna N, Wan DC, Kawamoto HK, Bradley JP (2011) Craniofacial microsomia soft-tissue reconstruction comparison: inframammary extended circumflex scapular flap versus serial fat grafting. Plast Reconstr Surg 127(2):802–811. https://doi.org/10.1097/PRS.0b013e3181fed6e4

    Article  CAS  PubMed  Google Scholar 

  4. Eto H, Kato H, Suga H, Aoi N, Doi K, Kuno S, Yoshimura K (2012) The fate of adipocytes after nonvascularized fat grafting: evidence of early death and replacement of adipocytes. Plast Reconstr Surg. https://doi.org/10.1097/PRS.0b013e31824a2b19

    Article  PubMed  Google Scholar 

  5. Suga H, Eto H, Aoi N, Kato H, Araki J, Doi K, Higashino T, Yoshimura K (2010) Adipose tissue remodeling under ischemia: death of adipocytes and activation of stem/progenitor cells. Plast Reconstr Surg. https://doi.org/10.1097/PRS.0b013e3181f4468b

    Article  PubMed  Google Scholar 

  6. Kølle SF, Fischer-Nielsen A, Mathiasen AB, Elberg JJ, Oliveri RS, Glovinski PV, Kastrup J, Kirchhoff M, Rasmussen BS, Talman ML, Thomsen C, Dickmeiss E, Drzewiecki KT (2013) Enrichment of autologous fat grafts with ex-vivo expanded adipose tissue-derived stem cells for graft survival: a randomised placebo-controlled trial. Lancet 382(9898):1113–1120. https://doi.org/10.1016/S0140-6736(13)61410-5

    Article  PubMed  Google Scholar 

  7. Ha KY, Park H, Park SH, Lee BI, Ji YH, Kim TY, Yoon ES (2015) The relationship of a combination of human adipose tissue-derived stem Cells and frozen fat with the survival rate of transplanted fat. Arch Plast Surg 42(6):677–685. https://doi.org/10.5999/aps.2015.42.6.677

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zhang J, Wang Y, Zhao B, Fan L, Bai X, Yang L, Chang P, Hu D, Liu X (2015) Allogeneic adipose-derived stem cells protect fat grafts at the early stage and improve long-term retention in immunocompetent rats. Aesthetic Plast Surg 39(4):625–634. https://doi.org/10.1007/s00266-015-0505-9

    Article  PubMed  Google Scholar 

  9. Gidfar S, Milani FY, Milani BY, Shen X, Eslani M, Putra I, Huvard MJ, Sagha H, Djalilian AR (2017) Rapamycin prolongs the survival of corneal epithelial cells in culture. Sci Rep 7:40308. https://doi.org/10.1038/srep40308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Deng M, Gu Y, Liu Z, Qi Y, Ma GE, Kang N (2015) Endothelial differentiation of human adipose-derived stem cells on polyglycolic acid/polylactic acid mesh. Stem Cells Int 2015:350718. https://doi.org/10.1155/2015/350718

    Article  PubMed  PubMed Central  Google Scholar 

  11. Jung CH, Ro SH, Cao J, Otto NM, Kim DH (2010) mTOR regulation of autophagy. Febs Lett 584(7):1287–1295. https://doi.org/10.1016/j.febslet.2010.01.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Heckmann BL, Yang X, Zhang X, Liu J (2013) The autophagic inhibitor 3-methyladenine potently stimulates PKA-dependent lipolysis in adipocytes. Br J Pharmacol 168(1):163–171. https://doi.org/10.1111/j.1476-5381.2012.02110.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yoon MS, Zhang C, Sun Y, Schoenherr CJ, Chen J (2013) Mechanistic target of rapamycin controls homeostasis of adipogenesis. J Lipid Res 54(8):2166–2173. https://doi.org/10.1194/jlr.M037705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cho HJ, Park J, Lee HW, Lee YS, Kim JB (2004) Regulation of adipocyte differentiation and insulin action with rapamycin. Biochem Biophys Res Commun 321(4):942–948. https://doi.org/10.1016/j.bbrc.2004.07.050

    Article  CAS  PubMed  Google Scholar 

  15. Bell A, Grunder L, Sorisky A (2000) Rapamycin inhibits human adipocyte differentiation in primary culture. Obes Res 8(3):249–254. https://doi.org/10.1038/oby.2000.29

    Article  CAS  PubMed  Google Scholar 

  16. Ro SH, Jung CH, Hahn WS, Xu X, Kim YM, Yun YS, Park JM, Kim KH, Seo M, Ha TY, Arriaga EA, Bernlohr DA, Kim DH (2013) Distinct functions of Ulk1 and Ulk2 in the regulation of lipid metabolism in adipocytes. Autophagy 9(12):2103–2114. https://doi.org/10.4161/auto.26563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ma Y, Qi M, An Y, Zhang L, Yang R, Doro DH, Liu W, Jin Y (2018) Autophagy controls mesenchymal stem cell properties and senescence during bone aging. Aging Cell. https://doi.org/10.1111/acel.12709

    Article  PubMed  PubMed Central  Google Scholar 

  18. Xiang X, Zhao J, Xu G, Li Y, Zhang W (2011) mTOR and the differentiation of mesenchymal stem cells. Acta Biochim Biophys Sin (Shanghai) 43(7):501–510. https://doi.org/10.1093/abbs/gmr041

    Article  CAS  Google Scholar 

  19. Li C, Ye L, Yang L, Yu X, He Y, Chen Z, Li L, Zhang D (2017) Rapamycin promotes the survival and adipogenesis of ischemia-challenged adipose derived stem cells by improving autophagy. Cell Physiol Biochem 44(5):1762–1774. https://doi.org/10.1159/000485783

    Article  CAS  PubMed  Google Scholar 

  20. He B, Wang X, Jin X, Xue Z, Zhu J, Wang C, Jin Y, Fu Z (2020) β -Cypermethrin promotes the adipogenesis of 3T3-L1 cells via inducing autophagy and shaping an adipogenesis-friendly microenvironment. Acta Biochim Biophys Sin (Shanghai) 52(8):821–831. https://doi.org/10.1093/abbs/gmaa049

    Article  CAS  Google Scholar 

  21. Javier AF, Bata-Csorgo Z, Ellis CN, Kang S, Voorhees JJ, Cooper KD (1997) Rapamycin (sirolimus) inhibits proliferating cell nuclear antigen expression and blocks cell cycle in the G1 phase in human keratinocyte stem cells. J Clin Invest 99(9):2094–2099. https://doi.org/10.1172/JCI119382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang Q, Yang YJ, Wang H, Dong QT, Wang TJ, Qian HY, Xu H (2012) Autophagy activation: a novel mechanism of atorvastatin to protect mesenchymal stem cells from hypoxia and serum deprivation via AMP-activated protein kinase/mammalian target of rapamycin pathway. Stem Cells Dev 21(8):1321–1332. https://doi.org/10.1089/scd.2011.0684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kornicka K, Szłapka-Kosarzewska J, Śmieszek A, Marycz K (2019) 5-Azacytydine and resveratrol reverse senescence and ageing of adipose stem cells via modulation of mitochondrial dynamics and autophagy. J Cell Mol Med 23(1):237–259. https://doi.org/10.1111/jcmm.13914

    Article  CAS  PubMed  Google Scholar 

  24. Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, Ohsumi Y, Tokuhisa T, Mizushima N (2004) The role of autophagy during the early neonatal starvation period. Nature 432(7020):1032–1036. https://doi.org/10.1038/nature03029

    Article  CAS  PubMed  Google Scholar 

  25. Kim SJ, Peppas A, Hong SK, Yang G, Huang Y, Diaz G, Sadoshima J, Vatner DE, Vatner SF (2003) Persistent stunning induces myocardial hibernation and protection: flow/function and metabolic mechanisms. Circ Res 92(11):1233–1239. https://doi.org/10.1161/01.RES.0000076892.18394.B6

    Article  CAS  PubMed  Google Scholar 

  26. Carloni S, Buonocore G, Balduini W (2008) Protective role of autophagy in neonatal hypoxia-ischemia induced brain injury. Neurobiol Dis 32(3):329–339. https://doi.org/10.1016/j.nbd.2008.07.022

    Article  PubMed  Google Scholar 

  27. Crighton D, Wilkinson S, O’Prey J, Syed N, Smith P, Harrison PR, Gasco M, Garrone O, Crook T, Ryan KM (2006) DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 126(1):121–134. https://doi.org/10.1016/j.cell.2006.05.034

    Article  CAS  PubMed  Google Scholar 

  28. Scott RC, Juhász G, Neufeld TP (2007) Direct induction of autophagy by Atg1 inhibits cell growth and induces apoptotic cell death. Curr Biol 17(1):1–11. https://doi.org/10.1016/j.cub.2006.10.053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ejaz A, Mattesich M, Zwerschke W (2017) Silencing of the small GTPase DIRAS3 induces cellular senescence in human white adipose stromal/progenitor cells. Aging (Albany NY) 9(3):860–879. https://doi.org/10.18632/aging.101197

    Article  CAS  Google Scholar 

  30. García-Prat L, Martínez-Vicente M, Perdiguero E, Ortet L, Rodríguez-Ubreva J, Rebollo E, Ruiz-Bonilla V, Gutarra S, Ballestar E, Serrano AL, Sandri M, Muñoz-Cánoves P (2016) Autophagy maintains stemness by preventing senescence. Nature 529(7584):37–42. https://doi.org/10.1038/nature16187

    Article  CAS  PubMed  Google Scholar 

  31. Nakamura S, Yoshimori T (2018) Autophagy and longevity. Mol Cells 41(1):65–72. https://doi.org/10.14348/molcells.2018.2333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Suga H, Glotzbach JP, Sorkin M, Longaker MT, Gurtner GC (2014) Paracrine mechanism of angiogenesis in adipose-derived stem cell transplantation. Ann Plast Surg 72(2):234–241. https://doi.org/10.1097/SAP.0b013e318264fd6a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. An Y, Liu WJ, Xue P, Ma Y, Zhang LQ, Zhu B, Qi M, Li LY, Zhang YJ, Wang QT, Jin Y (2018) Autophagy promotes MSC-mediated vascularization in cutaneous wound healing via regulation of VEGF secretion. Cell Death Dis 9(2):58. https://doi.org/10.1038/s41419-017-0082-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shibata R, Ouchi N, Kihara S, Sato K, Funahashi T, Walsh K (2004) Adiponectin stimulates angiogenesis in response to tissue ischemia through stimulation of amp-activated protein kinase signaling. J Biol Chem 279(27):28670–28674. https://doi.org/10.1074/jbc.M402558200

    Article  CAS  PubMed  Google Scholar 

  35. Ouchi N, Kobayashi H, Kihara S, Kumada M, Sato K, Inoue T, Funahashi T, Walsh K (2004) Adiponectin stimulates angiogenesis by promoting cross-talk between AMP-activated protein kinase and Akt signaling in endothelial cells. J Biol Chem 279(2):1304–1309. https://doi.org/10.1074/jbc.M310389200

    Article  CAS  PubMed  Google Scholar 

  36. Chen X, Yan L, Guo Z, Chen Z, Chen Y, Li M, Huang C, Zhang X, Chen L (2016) Adipose-derived mesenchymal stem cells promote the survival of fat grafts via crosstalk between the Nrf2 and TLR4 pathways. Cell Death Dis 7(9):e2369. https://doi.org/10.1038/cddis.2016.261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

The authors declare that they have no acknowledgment in this study.

Funding

No funding was received for this article.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaonan Yang or Zuoliang Qi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest to disclose.

Ethical approval

All procedures performed in studies were in accordance with the ethical standards of the committee of the Peking Union Medical College Plastic Surgery Hospital.

Informed consent

Informed consent was obtained from all patients.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, F., Du, L., Song, G. et al. Rapamycin and 3-Methyladenine Influence the Apoptosis, Senescence, and Adipogenesis of Human Adipose-Derived Stem Cells by Promoting and Inhibiting Autophagy: An In Vitro and In Vivo Study. Aesth Plast Surg 45, 1294–1309 (2021). https://doi.org/10.1007/s00266-020-02101-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00266-020-02101-6

Keywords

Navigation