Skip to main content

Advertisement

Log in

PD-L1 overexpression is partially regulated by EGFR/HER2 signaling and associated with poor prognosis in patients with non-small-cell lung cancer

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Immunocheckpoint inhibitors targeting the programmed cell death-1 (PD-1) and PD-1 ligand 1 (PD-L1) axis have shown promising results in patients with non-small-cell lung cancer (NSCLC). Recent research has shown that epidermal growth factor receptor (EGFR) signaling affects PD-L1 expression in NSCLC cells; however, the mechanism regulating PD-L1 expression in tumor cells remains unclear. Using immunohistochemistry, we evaluated the impact of expression of PD-L1 and EGF family receptors EGFR and human epidermal growth factor receptor 2 (HER2) in tumor cells from 91 patients with pathological Stage IA–IIIA NSCLC. Overexpression of PD-L1 was observed in 14% of the resected tumors, and associated with poor recurrence-free survival (p = 0.021) and overall survival (p = 0.033). PD-L1 expression is positively correlated with EGFR expression and inversely correlated with HER2. NSCLC cell lines were treated in vitro with the EGFR ligand EGF with or without inhibition of EGFR or HER2, after which PD-L1 expression was evaluated using flow cytometry. Consistent with previous reports, PD-L1 expression was clearly enhanced by EGF. EGFR-tyrosine kinase inhibitors or EGFR small interfering RNA (siRNA) blocked EGF-induced PD-L1 overexpression in NSCLC cell lines, but HER2 siRNA did not. Moreover, our findings suggest that PD-L1 expression could be partially regulated via the PI3K/AKT and JAK/STAT pathways. We conclude that PD-L1 overexpression is associated with poor prognosis and is positively correlated with EGFR expression but inversely correlated with HER2 expression in NSCLC. We also showed that EGFR and HER2 have different effects on EGF-induced PD-L1 expression in NSCLC cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Ad:

Adenocarcinoma

APC:

Allophycocyanin

CEA:

Carcinoembryonic antigen

CI:

Confidence interval

CTL:

Cytotoxic T lymphocyte

EGFR:

Epidermal growth factor receptor

FDG-PET/CT:

18F-fluorodeoxyglucose positron emission tomography/computed tomography

HER2:

Human epidermal growth factor receptor 2

H-score:

Histoscore

IHC:

Immunohistochemical staining

IASLC/ATS/ERS:

International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society

NSCLC:

Non-small-cell lung cancer

OS:

Overall survival

p-:

Phosphorylated-

PD-1:

Programmed cell death-1

PD-L1:

Programmed cell death-1 ligand 1

PE:

Phycoerythrin

RFS:

Recurrence-free survival

ROC:

Receiver operating characteristic

siRNA:

Small interfering RNA

Sq:

Squamous cell carcinoma

SUVmax :

Maximum standard uptake value

TKI:

Tyrosine kinase inhibitor

References

  1. Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, Fitz LJ, Malenkovich N, Okazaki T, Byrne MC, Horton HF, Fouser L, Carter L, Ling V, Bowman MR, Carreno BM, Collins M, Wood CR, Honjo T (2000) Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 192:1027–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Blank C, Gajewski TF, Mackensen A (2005) Interaction of PD-L1 on tumor cells with PD-1 on tumor-specific T cells as a mechanism of immune evasion: implications for tumor immunotherapy. Cancer Immunol Immunother 54:307–314. doi:10.1007/s00262-004-0593-x

    Article  CAS  PubMed  Google Scholar 

  3. Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12:252–264. doi:10.1038/nrc3239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Weber JS, D’Angelo SP, Minor D, Hodi FS, Gutzmer R, Neyns B, Hoeller C, Khushalani NI, Miller WH Jr, Lao CD, Linette GP, Thomas L, Lorigan P, Grossmann KF, Hassel JC, Maio M, Sznol M, Ascierto PA, Mohr P, Chmielowski B, Bryce A, Svane IM, Grob JJ, Krackhardt AM, Horak C, Lambert A, Yang AS, Larkin J (2015) Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol 16:375–384. doi:10.1016/S1470-2045(15)70076-8

    Article  CAS  PubMed  Google Scholar 

  5. Brahmer J, Reckamp KL, Baas P, Crino L, Eberhardt WE, Poddubskaya E, Antonia S, Pluzanski A, Vokes EE, Holgado E, Waterhouse D, Ready N, Gainor J, Aren Frontera O, Havel L, Steins M, Garassino MC, Aerts JG, Domine M, Paz-Ares L, Reck M, Baudelet C, Harbison CT, Lestini B, Spigel DR (2015) Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. New Engl J Med 373:123–135. doi:10.1056/NEJMoa1504627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, Chow LQ, Vokes EE, Felip E, Holgado E, Barlesi F, Kohlhaufl M, Arrieta O, Burgio MA, Fayette J, Lena H, Poddubskaya E, Gerber DE, Gettinger SN, Rudin CM, Rizvi N, Crino L, Blumenschein GR Jr, Antonia SJ, Dorange C, Harbison CT, Graf Finckenstein F, Brahmer JR (2015) Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. New Engl J Med 373:1627–1639. doi:10.1056/NEJMoa1507643

    Article  CAS  PubMed  Google Scholar 

  7. Herbst RS, Baas P, Kim DW, Felip E, Perez-Gracia JL, Han JY, Molina J, Kim JH, Arvis CD, Ahn MJ, Majem M, Fidler MJ, de Castro G Jr, Garrido M, Lubiniecki GM, Shentu Y, Im E, Dolled-Filhart M, Garon EB (2016) Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet 387:1540–1550. doi:10.1016/S0140-6736(15)01281-7

    Article  CAS  PubMed  Google Scholar 

  8. Velcheti V, Schalper KA, Carvajal DE, Anagnostou VK, Syrigos KN, Sznol M, Herbst RS, Gettinger SN, Chen L, Rimm DL (2014) Programmed death ligand-1 expression in non-small cell lung cancer. Lab Invest 94:107–116. doi:10.1038/labinvest.2013.130

    Article  CAS  PubMed  Google Scholar 

  9. Yang CY, Lin MW, Chang YL, Wu CT, Yang PC (2014) Programmed cell death-ligand 1 expression in surgically resected stage I pulmonary adenocarcinoma and its correlation with driver mutations and clinical outcomes. Eur J Cancer 50:1361–1369. doi:10.1016/j.ejca.2014.01.018

    Article  CAS  PubMed  Google Scholar 

  10. Konishi J, Yamazaki K, Azuma M, Kinoshita I, Dosaka-Akita H, Nishimura M (2004) B7-H1 expression on non-small cell lung cancer cells and its relationship with tumor-infiltrating lymphocytes and their PD-1 expression. Clin Cancer Res 10:5094–5100. doi:10.1158/1078-0432.CCR-04-0428

    Article  CAS  PubMed  Google Scholar 

  11. Sun JM, Zhou W, Choi YL, Choi SJ, Kim SE, Wang Z, Dolled-Filhart M, Emancipator K, Wu D, Weiner R, Frisman D, Kim HK, Choi YS, Shim YM, Kim J (2016) Prognostic significance of PD-L1 in patients with non-small cell lung cancer: a large cohort study of surgically resected cases. J Thorac Oncol 11:1003–1011. doi:10.1016/j.jtho.2016.04.007

    Article  CAS  PubMed  Google Scholar 

  12. Shimoji M, Shimizu S, Sato K, Suda K, Kobayashi Y, Tomizawa K, Takemoto T, Mitsudomi T (2016) Clinical and pathologic features of lung cancer expressing programmed cell death ligand 1 (PD-L1). Lung Cancer 98:69–75. doi:10.1016/j.lungcan.2016.04.021

    Article  PubMed  Google Scholar 

  13. Gschwind A, Fischer OM, Ullrich A (2004) The discovery of receptor tyrosine kinases: targets for cancer therapy. Nat Rev Cancer 4:361–370. doi:10.1038/nrc1360

    Article  CAS  PubMed  Google Scholar 

  14. Akbay EA, Koyama S, Carretero J, Altabef A, Tchaicha JH, Christensen CL, Mikse OR, Cherniack AD, Beauchamp EM, Pugh TJ, Wilkerson MD, Fecci PE, Butaney M, Reibel JB, Soucheray M, Cohoon TJ, Janne PA, Meyerson M, Hayes DN, Shapiro GI, Shimamura T, Sholl LM, Rodig SJ, Freeman GJ, Hammerman PS, Dranoff G, Wong KK (2013) Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors. Cancer Discov 3:1355–1363. doi:10.1158/2159-8290.CD-13-0310

    Article  CAS  PubMed  Google Scholar 

  15. Azuma K, Ota K, Kawahara A, Hattori S, Iwama E, Harada T, Matsumoto K, Takayama K, Takamori S, Kage M, Hoshino T, Nakanishi Y, Okamoto I (2014) Association of PD-L1 overexpression with activating EGFR mutations in surgically resected nonsmall-cell lung cancer. Ann Oncol 25:1935–1940. doi:10.1093/annonc/mdu242

    Article  CAS  PubMed  Google Scholar 

  16. Chen N, Fang W, Zhan J, Hong S, Tang Y, Kang S, Zhang Y, He X, Zhou T, Qin T, Huang Y, Yi X, Zhang L (2015) Upregulation of PD-L1 by EGFR activation mediates the immune escape in EGFR-driven NSCLC: implication for optional immune targeted therapy for NSCLC patients with EGFR mutation. J Thorac Oncol 10:910–923. doi:10.1097/JTO.0000000000000500

    Article  CAS  PubMed  Google Scholar 

  17. Ota K, Azuma K, Kawahara A, Hattori S, Iwama E, Tanizaki J, Harada T, Matsumoto K, Takayama K, Takamori S, Kage M, Hoshino T, Nakanishi Y, Okamoto I (2015) Induction of PD-L1 expression by the EML4-ALK oncoprotein and downstream signaling pathways in non-small cell lung cancer. Clin Cancer Res 21:4014–4021. doi:10.1158/1078-0432.CCR-15-0016

    Article  CAS  PubMed  Google Scholar 

  18. Okita R, Yukawa T, Nojima Y, Maeda A, Saisho S, Shimizu K, Nakata M (2016) MHC class I chain-related molecule A and B expression is upregulated by cisplatin and associated with good prognosis in patients with non-small cell lung cancer. Cancer Immunol Immunother 65:499–509. doi:10.1007/s00262-016-1814-9

    Article  CAS  PubMed  Google Scholar 

  19. Travis WD, Brambilla E, Müller-Hermelink HK, Harris CC (2004) Tumours of the lung, pleura, thymus and heart. Pathology & genetics. IARC, Lyon

    Google Scholar 

  20. Travis WD, Brambilla E, Noguchi M, Nicholson AG, Geisinger KR, Yatabe Y, Beer DG, Powell CA, Riely GJ, Van Schil PE, Garg K, Austin JH, Asamura H, Rusch VW, Hirsch FR, Scagliotti G, Mitsudomi T, Huber RM, Ishikawa Y, Jett J, Sanchez-Cespedes M, Sculier JP, Takahashi T, Tsuboi M, Vansteenkiste J, Wistuba I, Yang PC, Aberle D, Brambilla C, Flieder D, Franklin W, Gazdar A, Gould M, Hasleton P, Henderson D, Johnson B, Johnson D, Kerr K, Kuriyama K, Lee JS, Miller VA, Petersen I, Roggli V, Rosell R, Saijo N, Thunnissen E, Tsao M, Yankelewitz D (2011) International association for the study of lung cancer/american thoracic society/european respiratory society international multidisciplinary classification of lung adenocarcinoma. J Thorac Oncol 6:244–285. doi:10.1097/JTO.0b013e318206a221

    Article  PubMed  PubMed Central  Google Scholar 

  21. Goldstraw P, Crowley J, Chansky K, Giroux DJ, Groome PA, Rami-Porta R, Postmus PE, Rusch V, Sobin L, International Association for the Study of Lung Cancer International Staging C, Participating I (2007) The IASLC Lung Cancer Staging Project: proposals for the revision of the TNM stage groupings in the forthcoming (seventh) edition of the TNM Classification of malignant tumours. J Thorac Oncol 2:706–714. doi:10.1097/JTO.0b013e31812f3c1a

    Article  PubMed  Google Scholar 

  22. Nunez MI, Behrens C, Woods DM, Lin H, Suraokar M, Kadara H, Hofstetter W, Kalhor N, Lee JJ, Franklin W, Stewart DJ, Wistuba II (2012) High expression of folate receptor alpha in lung cancer correlates with adenocarcinoma histology and EGFR mutation. J Thorac Oncol 7:833–840. doi:10.1097/JTO.0b013e31824de09c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Okita R, Wolf D, Yasuda K, Maeda A, Yukawa T, Saisho S, Shimizu K, Yamaguchi Y, Oka M, Nakayama E, Lundqvist A, Kiessling R, Seliger B, Nakata M (2015) Contrasting effects of the cytotoxic anticancer drug gemcitabine and the EGFR tyrosine kinase inhibitor gefitinib on NK cell-mediated cytotoxicity via regulation of NKG2D ligand in non-small-cell lung cancer cells. PLoS One 10:e0139809. doi:10.1371/journal.pone.0139809

    Article  PubMed  PubMed Central  Google Scholar 

  24. Okita R, Mougiakakos D, Ando T, Mao Y, Sarhan D, Wennerberg E, Seliger B, Lundqvist A, Mimura K, Kiessling R (2012) HER2/HER3 signaling regulates NK cell-mediated cytotoxicity via MHC class I chain-related molecule A and B expression in human breast cancer cell lines. J Immunol 188:2136–2145. doi:10.4049/jimmunol.1102237

    Article  CAS  PubMed  Google Scholar 

  25. Rigau V, Molina TJ, Chaffaud C, Huchon G, Audouin J, Chevret S, Brechot JM (2002) Blood vessel invasion in resected non small cell lung carcinomas is predictive of metastatic occurrence. Lung Cancer 38:169–176

    Article  CAS  PubMed  Google Scholar 

  26. Tsuchiya T, Akamine S, Muraoka M, Kamohara R, Tsuji K, Urabe S, Honda S, Yamasaki N (2007) Stage IA non-small cell lung cancer: vessel invasion is a poor prognostic factor and a new target of adjuvant chemotherapy. Lung Cancer 56:341–348. doi:10.1016/j.lungcan.2007.01.019

    Article  PubMed  Google Scholar 

  27. Avraham R, Yarden Y (2011) Feedback regulation of EGFR signalling: decision making by early and delayed loops. Nat Rev Mol Cell Biol 12:104–117. doi:10.1038/nrm3048

    Article  CAS  PubMed  Google Scholar 

  28. Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, Roche PC, Lu J, Zhu G, Tamada K, Lennon VA, Celis E, Chen L (2002) Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 8:793–800. doi:10.1038/nm730

    Article  CAS  PubMed  Google Scholar 

  29. Okazaki T, Honjo T (2006) The PD-1-PD-L pathway in immunological tolerance. Trends Immunol 27:195–201. doi:10.1016/j.it.2006.02.001

    Article  CAS  PubMed  Google Scholar 

  30. Nagai Y, Miyazawa H, Huqun, Tanaka T, Udagawa K, Kato M, Fukuyama S, Yokote A, Kobayashi K, Kanazawa M, Hagiwara K (2005) Genetic heterogeneity of the epidermal growth factor receptor in non-small cell lung cancer cell lines revealed by a rapid and sensitive detection system, the peptide nucleic acid-locked nucleic acid PCR clamp. Cancer Res 65(16):7276–7282. doi:10.1158/0008-5472.CAN-05-0331

    Article  CAS  PubMed  Google Scholar 

  31. Maruyama T, Mimura K, Sato E, Watanabe M, Mizukami Y, Kawaguchi Y, Ando T, Kinouchi H, Fujii H, Kono K (2010) Inverse correlation of HER2 with MHC class I expression on oesophageal squamous cell carcinoma. Br J Cancer 103:552–559. doi:10.1038/sj.bjc.6605772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mimura K, Ando T, Poschke I, Mougiakakos D, Johansson CC, Ichikawa J, Okita R, Nishimura MI, Handke D, Krug N, Choudhury A, Seliger B, Kiessling R (2011) T cell recognition of HLA-A2 restricted tumor antigens is impaired by the oncogene HER2. Int J Cancer 128:390–401. doi:10.1002/ijc.25613

    Article  CAS  PubMed  Google Scholar 

  33. Wei S, Shreiner AB, Takeshita N, Chen L, Zou W, Chang AE (2008) Tumor-induced immune suppression of in vivo effector T-cell priming is mediated by the B7-H1/PD-1 axis and transforming growth factor beta. Cancer Res 68:5432–5438. doi:10.1158/0008-5472.CAN-07-6598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zou W, Chen L (2008) Inhibitory B7-family molecules in the tumour microenvironment. Nat Rev Immunol 8:467–477. doi:10.1038/nri2326

    Article  CAS  PubMed  Google Scholar 

  35. Hynes NE, Lane HA (2005) ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer 5:341–354. doi:10.1038/nrc1609

    Article  CAS  PubMed  Google Scholar 

  36. Gainor JF, Shaw AT, Sequist LV, Fu X, Azzoli CG, Piotrowska Z, Huynh TG, Zhao L, Fulton L, Schultz KR, Howe E, Farago AF, Sullivan RJ, Stone JR, Digumarthy S, Moran T, Hata AN, Yagi Y, Yeap BY, Engelman JA, Mino-Kenudson M (2016) EGFR mutations and ALK rearrangements are associated with low response rates to PD-1 pathway blockade in non-small cell lung cancer: a retrospective analysis. Clin Cancer Res 22:4585–4593. doi:10.1158/1078-0432.CCR-15-3101

    Article  CAS  PubMed  Google Scholar 

  37. Lee CK, Man J, Lord S, Links M, Gebski V, Mok T, Yang JC (2017) Checkpoint inhibitors in metastatic EGFR-mutated non-small cell lung cancer-a meta-analysis. J Thorac Oncol 12:403–407. doi:10.1016/j.jtho.2016.10.007

    Article  PubMed  Google Scholar 

  38. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, Lee W, Yuan J, Wong P, Ho TS, Miller ML, Rekhtman N, Moreira AL, Ibrahim F, Bruggeman C, Gasmi B, Zappasodi R, Maeda Y, Sander C, Garon EB, Merghoub T, Wolchok JD, Schumacher TN, Chan TA (2015) Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348:124–128. doi:10.1126/science.aaa1348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kadara H, Choi M, Zhang J, Parra ER, Rodriguez-Canales J, Gaffney SG, Zhao Z, Behrens C, Fujimoto J, Chow C, Yoo Y, Kalhor N, Moran C, Rimm D, Swisher S, Gibbons DL, Heymach J, Kaftan E, Townsend JP, Lynch TJ, Schlessinger J, Lee J, Lifton RP, Wistuba II, Herbst RS (2016) Whole-exome sequencing and immune profiling of early-stage lung adenocarcinoma with fully annotated clinical follow-up. Ann Oncol. doi:10.1093/annonc/mdw436

    Google Scholar 

Download references

Acknowledgements

We thank Ms. Maitani and the staff of the Tissue Culture & Immunology and the Tissue Biology & Electron Microscopy Research Centers (Kawasaki Medical School) for providing technical assistance. This work was supported by grants from the Japan Society for the Promotion of Science (JSPS) Kakenhi Grant (25462189 and 16K10696), Kawasaki Medical School Project Grants (27–82 and 28–105), The Okayama Medical Foundation (no Grant Number) (to R. Okita), and Strategic Research Foundation Grant-aided Project for Private Universities from the Ministry of Education, Culture, Sport, Science, and Technology (S1291010) (to M. Nakata). The authors thank Editage for the language editing.

Author contributions

Conceived and designed the experiments: R. Okita. Performed the experiments: R. Okita. Analyzed the data: R. Okita and A. Maeda. Collected clinical data and samples: R. Okita, K. Shimizu, Y. Nojima, A. Maeda, S. Saisho, and M. Nakata. Contributed reagents/materials/analysis tools: R. Okita and M. Nakata. Wrote the manuscript: R. Okita and M. Nakata. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Ethics declarations

Our research was approved by the Kawasaki Medical School ethics committee (No. 1227-3).

Conflict of interest

Dr. M. Nakata received research funding from Kyowa Kirin and Taiho Pharma for this study. The sponsors had no control over the interpretation, writing, or publication of this work. Dr. M. Nakata also received research funding from CSL Behring and Eli Lilly for research outside the scope of the submitted work. All other authors declare no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 3351 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okita, R., Maeda, A., Shimizu, K. et al. PD-L1 overexpression is partially regulated by EGFR/HER2 signaling and associated with poor prognosis in patients with non-small-cell lung cancer. Cancer Immunol Immunother 66, 865–876 (2017). https://doi.org/10.1007/s00262-017-1986-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-017-1986-y

Keywords

Navigation