Skip to main content

Advertisement

Log in

The use of ferumoxytol for high-resolution vascular imaging and troubleshooting for abdominal allografts

  • Review
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Ferumoxytol is an ultrasmall superparamagnetic iron oxide which has been used as an off-label intravenous contrast agent for MRI. Unlike gadolinium-based contrast agents, ferumoxytol remains in the intravascular space with a long half-life of 14–21 h. During the first several hours, it acts as a blood-pool agent and has minimal parenchymal enhancement. Studies have shown adequate intravascular signal for up to 72 h after initial contrast bolus. Ferumoxytol has been shown to be safe, even in patients with renal failure. Ferumoxytol has shown promise in a variety of clinical settings. The exquisite resolution enabled by the long intravascular times and lack of background parenchymal enhancement is of particular interest in the vascular imaging of solid organ allografts. Ferumoxytol magnetic resonance angiography (MRA) may identify clinically actionable findings months before ultrasound, CT angiography, or Gadolinium-enhanced MRA. Ferumoxytol MRA is of particular benefit as a troubleshooting tool in the setting of equivocal ultrasound and CT imaging. In the following review, we highlight the use of ferumoxytol for high-resolution MR vascular imaging for abdominal solid organ allografts, with representative cases.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Prince MR, Zhang HL, Chabra SG, Jacobs P, Wang Y (2003) A pilot investigation of new superparamagnetic iron oxide (ferumoxytol) as a contrast agent for cardiovascular MRI. J Xray Sci Technol 11:231-240.

    CAS  PubMed  Google Scholar 

  2. Chen C, Ge J, Gao Y, Chen L, Cui J, Zeng J, Gao M (2022) Ultrasmall superparamagnetic iron oxide nanoparticles: A next generation contrast agent for magnetic resonance imaging. Wiley Interdiscip Rev Nanomed Nanobiotechnol 14:e1740.

    Article  CAS  PubMed  Google Scholar 

  3. Spinowitz BS, Kausz AT, Baptista J, Noble SD, Sothinathan R, Bernardo MV, Brenner L, Pereira BJ (2008) Ferumoxytol for treating iron deficiency anemia in CKD. J Am Soc Nephrol 19:1599-1605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Li W, Tutton S, Vu AT, Pierchala L, Li BS, Lewis JM, Prasad PV, Edelman RR (2005) First-pass contrast-enhanced magnetic resonance angiography in humans using ferumoxytol, a novel ultrasmall superparamagnetic iron oxide (USPIO)-based blood pool agent. J Magn Reson Imaging 21:46-52.

    Article  PubMed  Google Scholar 

  5. Neuwelt EA, Hamilton BE, Varallyay CG, Rooney WR, Edelman RD, Jacobs PM, Watnick SG (2009) Ultrasmall superparamagnetic iron oxides (USPIOs): a future alternative magnetic resonance (MR) contrast agent for patients at risk for nephrogenic systemic fibrosis (NSF)? Kidney Int 75:465-474.

    Article  CAS  PubMed  Google Scholar 

  6. Tedeschi E, Caranci F, Giordano F, Angelini V, Cocozza S, Brunetti A (2017) Gadolinium retention in the body: what we know and what we can do. Radiol Med 122:589-600.

    Article  PubMed  Google Scholar 

  7. Thomsen HS (2017) Are the increasing amounts of gadolinium in surface and tap water dangerous? Acta Radiol 58:259-263.

    Article  PubMed  Google Scholar 

  8. Bashir MR, Bhatti L, Marin D, Nelson RC (2015) Emerging applications for ferumoxytol as a contrast agent in MRI. J Magn Reson Imaging 41:884-898.

    Article  PubMed  Google Scholar 

  9. Corot C, Robert P, Idée JM, Port M (2006) Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev 58:1471-1504.

    Article  CAS  PubMed  Google Scholar 

  10. Toth GB, Varallyay CG, Horvath A, Bashir MR, Choyke PL, Daldrup-Link HE, Dosa E, Finn JP, Gahramanov S, Harisinghani M, Macdougall I, Neuwelt A, Vasanawala SS, Ambady P, Barajas R, Cetas JS, Ciporen J, DeLoughery TJ, Doolittle ND, Fu R, Grinstead J, Guimaraes AR, Hamilton BE, Li X, McConnell HL, Muldoon LL, Nesbit G, Netto JP, Petterson D, Rooney WD, Schwartz D, Szidonya L, Neuwelt EA (2017) Current and potential imaging applications of ferumoxytol for magnetic resonance imaging. Kidney Int 92:47-66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kordbacheh H, Baliyan V, Parakh A, Wojtkiewicz GR, Hedgire S, Harisinghani MG (2019) Pictorial review on abdominal applications of ferumoxytol in MR imaging. Abdom Radiol (NY) 44:3273-3284.

    Article  PubMed  Google Scholar 

  12. Neuwelt EA, Várallyay CG, Manninger S, Solymosi D, Haluska M, Hunt MA, Nesbit G, Stevens A, Jerosch-Herold M, Jacobs PM, Hoffman JM (2007) The potential of ferumoxytol nanoparticle magnetic resonance imaging, perfusion, and angiography in central nervous system malignancy: a pilot study. Neurosurgery 60:601–611; discussion 611–602.

  13. Hope MD, Hope TA, Zhu C, Faraji F, Haraldsson H, Ordovas KG, Saloner D (2015) Vascular Imaging With Ferumoxytol as a Contrast Agent. AJR Am J Roentgenol 205:W366-373.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bowman AW, Gooch CR, Alexander LF, Desai MA, Bolan CW (2021) Vascular applications of ferumoxytol-enhanced magnetic resonance imaging of the abdomen and pelvis. Abdom Radiol (NY) 46:2203-2218.

    Article  PubMed  Google Scholar 

  15. Daldrup-Link HE (2017) Ten Things You Might Not Know about Iron Oxide Nanoparticles. Radiology 284:616-629.

    Article  PubMed  Google Scholar 

  16. Daldrup-Link HE, Theruvath AJ, Rashidi A, Iv M, Majzner RG, Spunt SL, Goodman S, Moseley M (2022) How to stop using gadolinium chelates for magnetic resonance imaging: clinical-translational experiences with ferumoxytol. Pediatr Radiol 52:354-366.

    Article  PubMed  Google Scholar 

  17. Stoumpos S, Hennessy M, Vesey AT, Radjenovic A, Kasthuri R, Kingsmore DB, Mark PB, Roditi G (2018) Ferumoxytol-enhanced magnetic resonance angiography for the assessment of potential kidney transplant recipients. Eur Radiol 28:115-123.

    Article  PubMed  Google Scholar 

  18. Chandarana H, Block TK, Rosenkrantz AB, Lim RP, Kim D, Mossa DJ, Babb JS, Kiefer B, Lee VS (2011) Free-breathing radial 3D fat-suppressed T1-weighted gradient echo sequence: a viable alternative for contrast-enhanced liver imaging in patients unable to suspend respiration. Invest Radiol 46:648-653.

    Article  PubMed  Google Scholar 

  19. Corwin MT, Fananapazir G, Chaudhari AJ (2016) MR Angiography of Renal Transplant Vasculature with Ferumoxytol:: Comparison of High-Resolution Steady-State and First-Pass Acquisitions. Acad Radiol 23:368-373.

    Article  PubMed  Google Scholar 

  20. Fananapazir G, Bashir MR, Corwin MT, Lamba R, Vu CT, Troppmann C (2017) Comparison of ferumoxytol-enhanced MRA with conventional angiography for assessment of severity of transplant renal artery stenosis. J Magn Reson Imaging 45:779-785.

    Article  PubMed  Google Scholar 

  21. Gondalia R, Vernuccio F, Marin D, Bashir MR (2018) The role of MR imaging in the assessment of renal allograft vasculature. Abdom Radiol (NY) 43:2589-2596.

    Article  PubMed  Google Scholar 

  22. Stoumpos S, Hennessy M, Vesey AT, Radjenovic A, Kasthuri R, Kingsmore DB, Mark PB, Roditi G (2019) Ferumoxytol magnetic resonance angiography: a dose-finding study in patients with chronic kidney disease. Eur Radiol 29:3543-3552.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Anderson CM, Saloner D, Tsuruda JS, Shapeero LG, Lee RE (1990) Artifacts in maximum-intensity-projection display of MR angiograms. AJR Am J Roentgenol 154:623-629.

    Article  CAS  PubMed  Google Scholar 

  24. Fananapazir G, Marin D, Suhocki PV, Kim CY, Bashir MR (2014) Vascular artifact mimicking thrombosis on MR imaging using ferumoxytol as a contrast agent in abdominal vascular assessment. J Vasc Interv Radiol 25:969-976.

    Article  PubMed  Google Scholar 

  25. Carr JC, Carroll TJ (2012) Magnetic Resonance Angiography: Principles and Applications. Springer, New York, NY

    Book  Google Scholar 

  26. Prevention CfDCa (2015) FDA Drug Safety Communication: FDA strengthens warnings and changes prescribing instructions to decrease the risk of serious allergic reactions with anemia drug Feraheme (ferumoxytol).

  27. Nguyen KL, Yoshida T, Kathuria-Prakash N, Zaki IH, Varallyay CG, Semple SI, Saouaf R, Rigsby CK, Stoumpos S, Whitehead KK, Griffin LM, Saloner D, Hope MD, Prince MR, Fogel MA, Schiebler ML, Roditi GH, Radjenovic A, Newby DE, Neuwelt EA, Bashir MR, Hu P, Finn JP (2019) Multicenter Safety and Practice for Off-Label Diagnostic Use of Ferumoxytol in MRI. Radiology 293:554-564.

    Article  PubMed  Google Scholar 

  28. Ahmad F, Treanor L, McGrath TA, Walker D, McInnes MDF, Schieda N (2021) Safety of Off-Label Use of Ferumoxtyol as a Contrast Agent for MRI: A Systematic Review and Meta-Analysis of Adverse Events. J Magn Reson Imaging 53:840-858.

    Article  PubMed  Google Scholar 

  29. Harisinghani M, Ross RW, Guimaraes AR, Weissleder R (2007) Utility of a new bolus-injectable nanoparticle for clinical cancer staging. Neoplasia 9:1160-1165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. McDermott S, Thayer SP, Fernandez-Del Castillo C, Mino-Kenudson M, Weissleder R, Harisinghani MG (2013) Accurate prediction of nodal status in preoperative patients with pancreatic ductal adenocarcinoma using next-gen nanoparticle. Transl Oncol 6:670-675.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kooi ME, Cappendijk VC, Cleutjens KB, Kessels AG, Kitslaar PJ, Borgers M, Frederik PM, Daemen MJ, van Engelshoven JM (2003) Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation 107:2453-2458.

    Article  CAS  PubMed  Google Scholar 

  32. Tang TY, Howarth SP, Miller SR, Graves MJ, Patterson AJ, JM UK-I, Li ZY, Walsh SR, Brown AP, Kirkpatrick PJ, Warburton EA, Hayes PD, Varty K, Boyle JR, Gaunt ME, Zalewski A, Gillard JH (2009) The ATHEROMA (Atorvastatin Therapy: Effects on Reduction of Macrophage Activity) Study. Evaluation using ultrasmall superparamagnetic iron oxide-enhanced magnetic resonance imaging in carotid disease. J Am Coll Cardiol 53:2039-2050.

  33. Hariharan S, Johnson CP, Bresnahan BA, Taranto SE, McIntosh MJ, Stablein D (2000) Improved graft survival after renal transplantation in the United States, 1988 to 1996. N Engl J Med 342:605-612.

    Article  CAS  PubMed  Google Scholar 

  34. Fananapazir G, Troppmann C (2018) Vascular complications in kidney transplant recipients. Abdom Radiol (NY) 43:2546-2554.

    Article  PubMed  Google Scholar 

  35. Aktas S, Boyvat F, Sevmis S, Moray G, Karakayali H, Haberal M (2011) Analysis of vascular complications after renal transplantation. Transplant Proc 43:557-561.

    Article  CAS  PubMed  Google Scholar 

  36. Chen W, Kayler LK, Zand MS, Muttana R, Chernyak V, DeBoccardo GO (2015) Transplant renal artery stenosis: clinical manifestations, diagnosis and therapy. Clin Kidney J 8:71-78.

    Article  CAS  PubMed  Google Scholar 

  37. Snider JF, Hunter DW, Moradian GP, Castaneda-Zuniga WR, Letourneau JG (1989) Transplant renal artery stenosis: evaluation with duplex sonography. Radiology 172:1027-1030.

    Article  CAS  PubMed  Google Scholar 

  38. Gottlieb RH, Lieberman JL, Pabico RC, Waldman DL (1995) Diagnosis of renal artery stenosis in transplanted kidneys: value of Doppler waveform analysis of the intrarenal arteries. AJR Am J Roentgenol 165:1441-1446.

    Article  CAS  PubMed  Google Scholar 

  39. Obed A, Uihlein DC, Zorger N, Farkas S, Scherer MN, Krüger B, Banas B, Krämer BK (2008) Severe Renal Vein Stenosis of a Kidney Transplant with Beneficial Clinical Course after Successful Percutaneous Stenting. American Journal of Transplantation 8:2173-2176.

    Article  CAS  PubMed  Google Scholar 

  40. Aghayev A, Memon AA, Zheng S, Menard M, Siedlecki AM (2021) Transplant renal artery and vein occlusion evaluated with ferumoxytol-enhanced magnetic resonance angiography. Clin Imaging 77:142-146.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Cercueil JP, Chevet D, Mousson C, Tatou E, Krause D, Rifle G (1997) Acquired vein stenosis of renal allograft--percutaneous treatment with self-expanding metallic stent. Nephrol Dial Transplant 12:825-826.

    Article  CAS  PubMed  Google Scholar 

  42. Kim JK, Han DJ, Cho KS (2002) Post-infectious diffuse venous stenosis after renal transplantation: duplex ultrasonography and CT angiography. Eur Radiol 12 Suppl 3:S118-120.

    Article  PubMed  Google Scholar 

  43. Olliff S, Negus R, Deane C, Walters H (1991) Renal transplant vein stenosis: demonstration and percutaneous venoplasty of a new vascular complication in the transplant kidney. Clin Radiol 43:42-46.

    Article  CAS  PubMed  Google Scholar 

  44. Fananapazir G, Moshiri A, Corwin MT, Troppmann C (2017) Venous Neovascularization in a Recipient of a Pediatric Kidney Transplant. J Vasc Interv Radiol 28:623-625.

    Article  PubMed  Google Scholar 

  45. McArthur TA, Lockhart ME, Robbin ML (2011) High venous pressure in the main renal vein causing development of peritransplant venous collaterals in renal transplant patients: a rare finding. J Ultrasound Med 30:1731-1737.

    Article  PubMed  Google Scholar 

  46. Lim WH, Van Schie G, Warr K (2003) Chronic renal vein thrombosis in a renal allograft. Nephrology (Carlton) 8:248-250.

    Article  PubMed  Google Scholar 

  47. Caiado AH, Blasbalg R, Marcelino AS, da Cunha Pinho M, Chammas MC, da Costa Leite C, Cerri GG, de Oliveira AC, Bacchella T, Machado MC (2007) Complications of liver transplantation: multimodality imaging approach. Radiographics 27:1401-1417.

    Article  PubMed  Google Scholar 

  48. Wozney P, Zajko AB, Bron KM, Point S, Starzl TE (1986) Vascular complications after liver transplantation: a 5-year experience. American Journal of Roentgenology 147:657-663.

    Article  CAS  PubMed  Google Scholar 

  49. Quiroga S, Sebastià MC, Margarit C, Castells L, Boyé R, Alvarez-Castells A (2001) Complications of orthotopic liver transplantation: spectrum of findings with helical CT. Radiographics 21:1085-1102.

    Article  CAS  PubMed  Google Scholar 

  50. Abbasoglu O, Levy MF, Vodapally MS, Goldstein RM, Husberg BS, Gonwa TA, Klintmalm GB (1997) Hepatic artery stenosis after liver transplantation--incidence, presentation, treatment, and long term outcome. Transplantation 63:250-255.

    Article  CAS  PubMed  Google Scholar 

  51. Langnas AN, Marujo W, Stratta RJ, Wood RP, Shaw BW, Jr. (1991) Vascular complications after orthotopic liver transplantation. Am J Surg 161:76–82; discussion 82–73.

  52. Samoylova ML, Borle D, Ravindra KV (2019) Pancreas Transplantation: Indications, Techniques, and Outcomes. Surg Clin North Am 99:87-101.

    Article  PubMed  Google Scholar 

Download references

Funding

No funding was provided for the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Amar Shah, MD MPHS completed the literature review, case image acquisition, and drafting of the manuscript. Easton Neitzel completed the literature review and assisted in drafting of the manuscript. Ghaneh Fananapazir, MD assisted in literature review, drafting of the manuscript, and identification case images for use in review. Anshuman Panda, PhD, provided technical expertise and assisted in the drafting of the manuscript.

Corresponding author

Correspondence to Amar Shah.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest, financial or otherwise, to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, A., Neitzel, E., Panda, A. et al. The use of ferumoxytol for high-resolution vascular imaging and troubleshooting for abdominal allografts. Abdom Radiol (2024). https://doi.org/10.1007/s00261-024-04268-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00261-024-04268-x

Keywords

Navigation