Skip to main content

Advertisement

Log in

How to stop using gadolinium chelates for magnetic resonance imaging: clinical-translational experiences with ferumoxytol

  • Pediatric Body MRI
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Gadolinium chelates have been used as standard contrast agents for clinical MRI for several decades. However, several investigators recently reported that rare Earth metals such as gadolinium are deposited in the brain for months or years. This is particularly concerning for children, whose developing brain is more vulnerable to exogenous toxins compared to adults. Therefore, a search is under way for alternative MR imaging biomarkers. The United States Food and Drug Administration (FDA)-approved iron supplement ferumoxytol can solve this unmet clinical need: ferumoxytol consists of iron oxide nanoparticles that can be detected with MRI and provide significant T1- and T2-signal enhancement of vessels and soft tissues. Several investigators including our research group have started to use ferumoxytol off-label as a new contrast agent for MRI. This article reviews the existing literature on the biodistribution of ferumoxytol in children and compares the diagnostic accuracy of ferumoxytol- and gadolinium-chelate-enhanced MRI. Iron oxide nanoparticles represent a promising new class of contrast agents for pediatric MRI that can be metabolized and are not deposited in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Huguet M, Tobon-Gomez C, Bijnens BH et al (2009) Cardiac injuries in blunt chest trauma. J Cardiovasc Magn Reson 11:35

    Article  PubMed  PubMed Central  Google Scholar 

  2. Huisman TA, Sorensen AG (2004) Perfusion-weighted magnetic resonance imaging of the brain: techniques and application in children. Eur Radiol 14:59–72

    Article  PubMed  Google Scholar 

  3. Kim RJ, Wu E, Rafael A et al (2000) The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med 343:1445–1453

    Article  CAS  PubMed  Google Scholar 

  4. Rosenbaum DG, Askin G, Beneck DM et al (2017) Differentiating perforated from non-perforated appendicitis on contrast-enhanced magnetic resonance imaging. Pediatr Radiol 47:1483–1490

    Article  PubMed  Google Scholar 

  5. Sugimoto H, Takeda A, Hyodoh K (2001) MR imaging for evaluation of early rheumatoid arthritis. Semin Musculoskelet Radiol 5:159–165

    Article  CAS  PubMed  Google Scholar 

  6. Wakabayashi H, Saito J, Taki J et al (2016) Triple-phase contrast-enhanced MRI for the prediction of preoperative chemotherapeutic effect in patients with osteosarcoma: comparison with (99m)Tc-MIBI scintigraphy. Skelet Radiol 45:87–95

    Article  Google Scholar 

  7. Simon G, Link TM, Wortler K et al (2005) Detection of hepatocellular carcinoma: comparison of Gd-DTPA- and ferumoxides-enhanced MR imaging. Eur Radiol 15:895–903

    Article  CAS  PubMed  Google Scholar 

  8. Clauser P, Helbich TH, Kapetas P et al (2019) Breast lesion detection and characterization with contrast-enhanced magnetic resonance imaging: prospective randomized intraindividual comparison of gadoterate meglumine (0.15 mmol/kg) and gadobenate dimeglumine (0.075 mmol/kg) at 3T. J Magn Reson Imaging 49:1157–1165

    Article  PubMed  Google Scholar 

  9. Lohrke J, Frenzel T, Endrikat J et al (2016) 25 years of contrast-enhanced MRI: developments, current challenges and future perspectives. Adv Ther 33:1–28

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mikati AG, Tan H, Shenkar R et al (2014) Dynamic permeability and quantitative susceptibility: related imaging biomarkers in cerebral cavernous malformations. Stroke 45:598–601

    Article  CAS  PubMed  Google Scholar 

  11. Daldrup-Link HE, Simon GH, Brasch RC (2006) Imaging of tumor angiogenesis: current approaches and future prospects. Curr Pharm Des 12:2661–2672

    Article  CAS  PubMed  Google Scholar 

  12. Zhou Z, Lu ZR (2012) Gadolinium-based contrast agents for magnetic resonance cancer imaging. Wiley Interdiscip Rev Nanomed Nanobiotechnol 5:1–18

    Article  PubMed  PubMed Central  Google Scholar 

  13. Perazella MA (2009) Current status of gadolinium toxicity in patients with kidney disease. Clin J Am Soc Nephrol 4:461–469

    Article  CAS  PubMed  Google Scholar 

  14. Bennett CL, Qureshi ZP, Sartor AO et al (2012) Gadolinium-induced nephrogenic systemic fibrosis: the rise and fall of an iatrogenic disease. Clin Kidney J 5:82–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Perazella MA (2009) Advanced kidney disease, gadolinium and nephrogenic systemic fibrosis: the perfect storm. Curr Opin Nephrol Hypertens 18:519–525

    Article  PubMed  Google Scholar 

  16. Thomsen HS, Morcos SK, Almen T et al (2013) Nephrogenic systemic fibrosis and gadolinium-based contrast media: updated ESUR contrast medium safety committee guidelines. Eur Radiol 23:307–318

    Article  PubMed  Google Scholar 

  17. McDonald RJ, McDonald JS, Kallmes DF et al (2015) Intracranial gadolinium deposition after contrast-enhanced MR imaging. Radiology 275:772–782

    Article  PubMed  Google Scholar 

  18. Kanda T, Matsuda M, Oba H et al (2015) Gadolinium deposition after contrast-enhanced MR imaging. Radiology 277:924–925

    Article  PubMed  Google Scholar 

  19. Guo BJ, Yang ZL, Zhang LJ (2018) Gadolinium deposition in brain: current scientific evidence and future perspectives. Front Mol Neurosci 11:335

    Article  PubMed  PubMed Central  Google Scholar 

  20. Endrikat J, Dohanish S, Schleyer N et al (2018) 10 years of nephrogenic systemic fibrosis: a comprehensive analysis of nephrogenic systemic fibrosis reports received by a pharmaceutical company from 2006 to 2016. Investig Radiol 53:541–550

    Article  Google Scholar 

  21. Sherry AD, Caravan P, Lenkinski RE (2009) Primer on gadolinium chemistry. J Magn Reson Imaging 30:1240–1248

    Article  PubMed  PubMed Central  Google Scholar 

  22. Murata N, Gonzalez-Cuyar LF, Murata K et al (2016) Macrocyclic and other non-group 1 gadolinium contrast agents deposit low levels of gadolinium in brain and bone tissue: preliminary results from 9 patients with normal renal function. Investig Radiol 51:447–453

  23. Roman-Goldstein SM, Barnett PA, McCormick CI et al (1991) Effects of gadopentetate dimeglumine administration after osmotic blood-brain barrier disruption: toxicity and MR imaging findings. AJNR Am J Neuroradiol 12:885–890

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ray DE, Cavanagh JB, Nolan CC et al (1996) Neurotoxic effects of gadopentetate dimeglumine: behavioral disturbance and morphology after intracerebroventricular injection in rats. AJNR Am J Neuroradiol 17:365–373

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Miller JH, Hu HH, Pokorney A et al (2015) MRI brain signal intensity changes of a child during the course of 35 gadolinium contrast examinations. Pediatrics 136:e1637–e1640

    Article  PubMed  Google Scholar 

  26. Roberts DR, Holden KR (2016) Progressive increase of T1 signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images in the pediatric brain exposed to multiple doses of gadolinium contrast. Brain Dev 38:331–336

  27. Costa LG, Aschner M, Vitalone A et al (2004) Developmental neuropathology of environmental agents. Annu Rev Pharmacol Toxicol 44:87–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lanphear BP (2015) The impact of toxins on the developing brain. Annu Rev Public Health 36:211–230

    Article  PubMed  Google Scholar 

  29. Weinmann HJ, Brasch RC, Press WR et al (1984) Characteristics of gadolinium-DTPA complex: a potential NMR contrast agent. AJR Am J Roentgenol 142:619–624

    Article  CAS  PubMed  Google Scholar 

  30. Toth GB, Varallyay CG, Horvath A et al (2017) Current and potential imaging applications of ferumoxytol for magnetic resonance imaging. Kidney Int 92:47–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lu M, Cohen MH, Rieves D et al (2010) FDA report: ferumoxytol for intravenous iron therapy in adult patients with chronic kidney disease. Am J Hematol 85:315–319

    CAS  PubMed  Google Scholar 

  32. Balakrishnan VS, Rao M, Kausz AT et al (2009) Physicochemical properties of ferumoxytol, a new intravenous iron preparation. Eur J Clin Investig 39:489–496

    Article  CAS  Google Scholar 

  33. Schwenk MH (2010) Ferumoxytol: a new intravenous iron preparation for the treatment of iron deficiency anemia in patients with chronic kidney disease. Pharmacotherapy 30:70–79

    Article  CAS  PubMed  Google Scholar 

  34. Khurana A, Nejadnik H, Chapelin F et al (2013) Ferumoxytol: a new, clinically applicable label for stem-cell tracking in arthritic joints with MRI. Nanomedicine 8:1969–1983

    Article  CAS  PubMed  Google Scholar 

  35. Khurana A, Nejadnik H, Gawande R et al (2012) Intravenous ferumoxytol allows noninvasive MR imaging monitoring of macrophage migration into stem cell transplants. Radiology 264:803–811

  36. Neuwelt EA, Varallyay CG, Manninger S et al (2007) The potential of ferumoxytol nanoparticle magnetic resonance imaging, perfusion, and angiography in central nervous system malignancy: a pilot study. Neurosurgery 60:601–611

    Article  PubMed  Google Scholar 

  37. Simon GH, von Vopelius-Feldt J, Fu Y et al (2006) Ultrasmall supraparamagnetic iron oxide-enhanced magnetic resonance imaging of antigen-induced arthritis: a comparative study between SHU 555 C, ferumoxtran-10, and ferumoxytol. Investig Radiol 41:45–51

    Article  Google Scholar 

  38. Stabi KL, Bendz LM (2011) Ferumoxytol use as an intravenous contrast agent for magnetic resonance angiography. Ann Pharmacother 45:1571–1575

    Article  CAS  PubMed  Google Scholar 

  39. Singh A, Patel T, Hertel J et al (2008) Safety of ferumoxytol in patients with anemia and CKD. Am J Kidney Dis 52:907–915

    Article  CAS  PubMed  Google Scholar 

  40. Spinowitz BS, Kausz AT, Baptista J et al (2008) Ferumoxytol for treating iron deficiency anemia in CKD. J Am Soc Nephrol 19:1599–1605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Spinowitz BS, Schwenk MH, Jacobs PM et al (2005) The safety and efficacy of ferumoxytol therapy in anemic chronic kidney disease patients. Kidney Int 68:1801–1807

    Article  CAS  PubMed  Google Scholar 

  42. Iv M, Choudhri O, Dodd RL et al (2018) High-resolution 3D volumetric contrast-enhanced MR angiography with a blood pool agent (ferumoxytol) for diagnostic evaluation of pediatric brain arteriovenous malformations. J Neurosurg Pediatr 22:251–260

    Article  PubMed  Google Scholar 

  43. Lai LM, Cheng JY, Alley MT et al (2017) Feasibility of ferumoxytol-enhanced neonatal and young infant cardiac MRI without general anesthesia. J Magn Reson Imaging 45:1407–1418

  44. Muehe AM, Theruvath AJ, Lai L et al (2018) How to provide gadolinium-free PET/MR cancer staging of children and young adults in less than 1 h: the Stanford approach. Mol Imaging Biol 20:324–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mohanty S, Chen Z, Li K et al (2017) A novel theranostic strategy for MMP-14-expressing glioblastomas impacts survival. Mol Cancer Ther 16:1909–1921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zanganeh S, Hutter G, Spitler R et al (2016) Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues. Nat Nanotechnol 11:986–994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nejadnik H, Lenkov O, Gassert F et al (2016) Macrophage phagocytosis alters the MRI signal of ferumoxytol-labeled mesenchymal stromal cells in cartilage defects. Sci Rep 6:25897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Iv M, Telischak N, Feng D et al (2015) Clinical applications of iron oxide nanoparticles for magnetic resonance imaging of brain tumors. Nanomedicine 10:993–1018

    Article  CAS  PubMed  Google Scholar 

  49. Shi Q, Pisani LJ, Lee YK et al (2013) Evaluation of the novel USPIO GEH121333 for MR imaging of cancer immune responses. Contrast Media Mol Imaging 8:281–288

    Article  CAS  PubMed  Google Scholar 

  50. Daldrup-Link HE, Mohanty A, Cuenod C et al (2009) New perspectives on bone marrow contrast agents and molecular imaging. Semin Musculoskelet Radiol 13:145–156

    Article  PubMed  Google Scholar 

  51. Daldrup-Link HE, Henning T, Link TM (2007) MR imaging of therapy-induced changes of bone marrow. Eur Radiol 17:743–761

    Article  PubMed  Google Scholar 

  52. Metz S, Lohr S, Settles M et al (2006) Ferumoxtran-10-enhanced MR imaging of the bone marrow before and after conditioning therapy in patients with non-Hodgkin lymphomas. Eur Radiol 16:598–607

    Article  PubMed  Google Scholar 

  53. Daldrup-Link HE, Rydland J, Helbich TH et al (2003) Quantification of breast tumor microvascular permeability with feruglose-enhanced MR imaging: initial phase II multicenter trial. Radiology 229:885–892

  54. Patsialou A, Wyckoff J, Wang Y et al (2009) Invasion of human breast cancer cells in vivo requires both paracrine and autocrine loops involving the colony-stimulating factor-1 receptor. Cancer Res 69:9498–9506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Daldrup-Link H (2017) 10 things you might not know about iron oxide nanoparticles. Radiology 284:616–629

    Article  PubMed  Google Scholar 

  56. Hassan N, Cahill J, Rajasekaran S et al (2011) Ferumoxytol infusion in pediatric patients with gastrointestinal disorders: first case series. Ann Pharmacother 45:e63

    Article  PubMed  Google Scholar 

  57. Muehe AM, Feng D, von Eyben R et al (2016) Safety report of ferumoxytol for magnetic resonance imaging in children and young adults. Investig Radiol 51:221–227

    Article  CAS  Google Scholar 

  58. Theruvath AJ, Aghighi M, Iv M et al (2020) Brain iron deposition after ferumoxytol-enhanced MRI: a study of porcine brains. Nanotheranostics 4:195–200

    Article  PubMed  PubMed Central  Google Scholar 

  59. Iv M, Ng NN, Nair S et al (2020) Brain iron assessment after ferumoxytol-enhanced MRI in children and young adults with arteriovenous malformations: a case-control study. Radiology 297:438–446

    Article  PubMed  Google Scholar 

  60. Klenk C, Gawande R, Uslu L et al (2014) Ionising radiation-free whole-body MRI versus (18)F-fluorodeoxyglucose PET/CT scans for children and young adults with cancer: a prospective, non-randomised, single-Centre study. Lancet Oncol 15:275–285

    Article  PubMed  Google Scholar 

  61. Storey P, Lim RP, Chandarana H et al (2012) MRI assessment of hepatic iron clearance rates after USPIO administration in healthy adults. Investig Radiol 47:717–724

    Article  CAS  Google Scholar 

  62. Barajas RF Jr, Hamilton BE, Schwartz D et al (2018) Combined iron oxide nanoparticle ferumoxytol and gadolinium contrast enhanced MRI defines glioblastoma pseudo-progression. Neuro Oncol 21:517–526

  63. Li W, Tutton S, Vu AT et al (2005) First-pass contrast-enhanced magnetic resonance angiography in humans using ferumoxytol, a novel ultrasmall superparamagnetic iron oxide (USPIO)-based blood pool agent. J Magn Reson Imaging 21:46–52

    Article  PubMed  Google Scholar 

  64. Dosa E, Tuladhar S, Muldoon LL et al (2011) MRI using ferumoxytol improves the visualization of central nervous system vascular malformations. Stroke 42:1581–1588

    Article  PubMed  PubMed Central  Google Scholar 

  65. Pohlmann A, Karczewski P, Ku MC et al (2014) Cerebral blood volume estimation by ferumoxytol-enhanced steady-state MRI at 9.4 T reveals microvascular impact of alpha1 -adrenergic receptor antibodies. NMR Biomed 27:1085–1093

    Article  CAS  PubMed  Google Scholar 

  66. Li W, Salanitri J, Tutton S et al (2007) Lower extremity deep venous thrombosis: evaluation with ferumoxytol-enhanced MR imaging and dual-contrast mechanism —preliminary experience. Radiology 242:873–881

    Article  PubMed  Google Scholar 

  67. Hamilton BE, Woltjer RL, Prola-Netto J et al (2016) Ferumoxytol-enhanced MRI differentiation of meningioma from dural metastases: a pilot study with immunohistochemical observations. J Neurooncol 129:301–309

  68. Daldrup-Link HE, Kaiser A, Helbich T et al (2003) Macromolecular contrast medium (feruglose) versus small molecular contrast medium (gadopentetate) enhanced magnetic resonance imaging: differentiation of benign and malignant breast lesions. Acad Radiol 10:1237–1246

  69. Vogl TJ, Hammerstingl R, Schwarz W et al (1996) Magnetic resonance imaging of focal liver lesions. Comparison of the superparamagnetic iron oxide resovist versus gadolinium-DTPA in the same patient. Investig Radiol 31:696–708

    Article  CAS  Google Scholar 

  70. Lutz AM, Willmann JK, Goepfert K et al (2005) Hepatocellular carcinoma in cirrhosis: enhancement patterns at dynamic gadolinium- and superparamagnetic iron oxide-enhanced T1-weighted MR imaging. Radiology 237:520–528

    Article  PubMed  Google Scholar 

  71. Heilmaier C, Lutz AM, Bolog N et al (2009) Focal liver lesions: detection and characterization at double-contrast liver MR imaging with ferucarbotran and gadobutrol versus single-contrast liver MR imaging. Radiology 253:724–733

    Article  PubMed  Google Scholar 

  72. Siedek F, Muehe AM, Theruvath AJ et al (2020) Comparison of ferumoxytol and Gd-chelate-enhanced MRI for assessment of bone and soft tissue sarcomas in children and young adults. Eur Radiol 30:1790–1803

    Article  CAS  PubMed  Google Scholar 

  73. Muehe AM, Siedek F, Theruvath AJ et al (2020) Differentiation of benign and malignant lymph nodes in pediatric patients on ferumoxytol-enhanced PET/MRI. Theranostics 10:3612–3621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Daldrup-Link HE, Rummeny EJ, Ihssen B et al (2002) Iron-oxide-enhanced MR imaging of bone marrow in patients with non-Hodgkin's lymphoma: differentiation between tumor infiltration and hypercellular bone marrow. Eur Radiol 12:1557–1566

    Article  PubMed  Google Scholar 

  75. Ward J, Guthrie JA, Scott DJ et al (2000) Hepatocellular carcinoma in the cirrhotic liver: double-contrast MR imaging for diagnosis. Radiology 216:154–162

    Article  CAS  PubMed  Google Scholar 

  76. Gahramanov S, Raslan AM, Muldoon LL et al (2010) Potential for differentiation of pseudoprogression from true tumor progression with dynamic susceptibility-weighted contrast-enhanced magnetic resonance imaging using ferumoxytol vs. gadoteridol: a pilot study. Int J Radiat Oncol Biol Phys 79:514–523

    Article  PubMed  PubMed Central  Google Scholar 

  77. Daldrup-Link HE, Golovko D, Ruffel B et al (2011) MR imaging of tumor associated macrophages with clinically-applicable iron oxide nanoparticles. Clin Cancer Res 17:5695–5704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Aghighi M, Theruvath AJ, Pareek A et al (2018) Magnetic resonance imaging of tumor-associated macrophages: clinical translation. Clin Cancer Res 24:4110–4118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Iv M, Samghabadi P, Holdsworth S et al (2019) Quantification of macrophages in high-grade gliomas by using ferumoxytol-enhanced MRI: a pilot study. Radiology 290:198–206

    Article  PubMed  Google Scholar 

  80. Mohanty S, Aghighi M, Yerneni K et al (2019) Improving the efficacy of osteosarcoma therapy: combining drugs that turn cancer cell 'don't eat me' signals off and 'eat me' signals on. Mol Oncol 13:2049–2061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Mohanty S, Yerneni K, Graef CM et al (2018) Imaging therapy response of osteosarcoma to anti-CD47 therapy. Cell Death Dis 10:36–49

    Article  Google Scholar 

  82. Aghighi M, Golovko D, Ansari C et al (2015) Imaging tumor necrosis with ferumoxytol. PLoS One 10:e0142665

    Article  PubMed  PubMed Central  Google Scholar 

  83. Lim HS, Jeong YY, Kang HK et al (2006) Imaging features of hepatocellular carcinoma after transcatheter arterial chemoembolization and radiofrequency ablation. AJR Am J Roentgenol 187:W341–W349

    Article  PubMed  Google Scholar 

  84. Fukumura D, Duda DG, Munn LL et al (2010) Tumor microvasculature and microenvironment: novel insights through intravital imaging in pre-clinical models. Microcirculation 17:206–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Simon GH, Bauer J, Saborovski O et al (2006) T1 and T2 relaxivity of intracellular and extracellular USPIO at 1.5 T and 3T clinical MR scanning. Eur Radiol 16:738–745

  86. Turetschek K, Huber S, Floyd E et al (2001) MR imaging characterization of microvessels in experimental breast tumors by using a particulate contrast agent with histopathologic correlation 1. Radiology 218:562–569

    Article  CAS  PubMed  Google Scholar 

  87. Hanna RF, Kased N, Kwan SW et al (2008) Double-contrast MRI for accurate staging of hepatocellular carcinoma in patients with cirrhosis. AJR Am J Roentgenol 190:47–57

    Article  PubMed  Google Scholar 

  88. Guiu B, Loffroy R, Ben Salem D et al (2008) Combined SPIO-gadolinium magnetic resonance imaging in cirrhotic patients: negative predictive value and role in screening for hepatocellular carcinoma. Abdom Imaging 33:520–528

    Article  PubMed  Google Scholar 

  89. Daldrup-Link HE, Rudelius M, Piontek G et al (2005) Migration of iron oxide-labeled human hematopoietic progenitor cells in a mouse model: in vivo monitoring with 1.5-T MR imaging equipment. Radiology 234:197–205

    Article  PubMed  Google Scholar 

  90. Simon GH, von Vopelius-Feldt J, Wendland MF et al (2006) MRI of arthritis: comparison of ultrasmall superparamagnetic iron oxide vs. Gd-DTPA. J Magn Reson Imaging 23:720–727

  91. Henning TD, Sutton EJ, Kim A et al (2009) The influence of ferucarbotran on the chondrogenesis of human mesenchymal stem cells. Contrast Media Mol Imaging 4:165–173

    Article  CAS  PubMed  Google Scholar 

  92. Henning TD, Wendland MF, Golovko D et al (2009) Relaxation effects of ferucarbotran-labeled mesenchymal stem cells at 1.5T and 3T: discrimination of viable from lysed cells. Magn Reson Med 62:325–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Nedopil A, Klenk C, Kim C et al (2010) MR signal characteristics of viable and apoptotic human mesenchymal stem cells in matrix-associated stem cell implants for treatment of osteoarthritis. Investig Radiol 45:634–640

    Article  CAS  Google Scholar 

  94. Meier R, Golovko D, Tavri S et al (2011) Depicting adoptive immunotherapy for prostate cancer in an animal model with magnetic resonance imaging. Magn Reson Med 65:756–763

    Article  CAS  PubMed  Google Scholar 

  95. Henning TD, Gawande R, Khurana A et al (2012) Magnetic resonance imaging of ferumoxide-labeled mesenchymal stem cells in cartilage defects: in vitro and in vivo investigations. Mol Imaging 11:197–209

    Article  CAS  PubMed  Google Scholar 

  96. Khurana A, Chapelin F, Beck G et al (2013) Iron administration before stem cell harvest enables MR imaging tracking after transplantation. Radiology 269:186–197

    Article  PubMed  PubMed Central  Google Scholar 

  97. Ansari C, Tikhomirov GA, Hong SH et al (2014) Cancer therapy: development of novel tumor-targeted theranostic nanoparticles activated by membrane-type matrix metalloproteinases for combined cancer magnetic resonance imaging and therapy. Small 10:566–575, 417

    Article  Google Scholar 

  98. Zhu J, Zhou L, XingWu F (2006) Tracking neural stem cells in patients with brain trauma. N Engl J Med 355:2376–2378

    Article  CAS  PubMed  Google Scholar 

  99. Callera F, de Melo CM (2007) Magnetic resonance tracking of magnetically labeled autologous bone marrow CD34+ cells transplanted into the spinal cord via lumbar puncture technique in patients with chronic spinal cord injury: CD34+ cells' migration into the injured site. Stem Cells Dev 16:461–466

    Article  PubMed  Google Scholar 

  100. de Vries IJ, Lesterhuis WJ, Barentsz JO et al (2005) Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nat Biotechnol 23:1407–1413

    Article  PubMed  Google Scholar 

  101. Toso C, Vallee JP, Morel P et al (2008) Clinical magnetic resonance imaging of pancreatic islet grafts after iron nanoparticle labeling. Am J Transplant 8:701–706

    Article  CAS  PubMed  Google Scholar 

  102. Theruvath AJ, Nejadnik H, Muehe AM et al (2018) Tracking cell transplants in femoral osteonecrosis with magnetic resonance imaging: a proof-of-concept study in patients. Clin Cancer Res 24:6223–6229

    Article  PubMed  PubMed Central  Google Scholar 

  103. McEnery PT, Stablein DM, Arbus G et al (1992) Renal transplantation in children. A report of the North American Pediatric Renal Transplant Cooperative Study. N Engl J Med 326:1727–1732

  104. Birk PE (2012) Surveillance biopsies in children post-kidney transplant. Pediatr Nephrol 27:753–760

    Article  PubMed  Google Scholar 

  105. Aghighi M, Pisani L, Theruvath AJ et al (2017) Ferumoxytol is not retained in kidney allografts in patients undergoing acute rejection. Mol Imaging Biol 20:139–149

    Article  Google Scholar 

  106. Kriz J, Jirák D, Girman P et al (2005) Magnetic resonance imaging of pancreatic islets in tolerance and rejection. Transplantation 80:1596–1603

    Article  PubMed  Google Scholar 

  107. Evgenov NV, Medarova Z, Pratt J et al (2006) In vivo imaging of immune rejection in transplanted pancreatic islets. Diabetes 55:2419–2428

    Article  CAS  PubMed  Google Scholar 

  108. Chae EY, Song EJ, Sohn JY et al (2010) Allogeneic renal graft rejection in a rat model: in vivo MR imaging of the homing trait of macrophages 1. Radiology 256:847–854

    Article  PubMed  Google Scholar 

  109. Hauger O, Grenier N, Deminère C et al (2007) USPIO-enhanced MR imaging of macrophage infiltration in native and transplanted kidneys: initial results in humans. Eur Radiol 17:2898–2907

    Article  PubMed  Google Scholar 

  110. Ricardo SD, van Goor H, Eddy AA (2008) Macrophage diversity in renal injury and repair. J Clin Invest 118:3522–3530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Magil AB (2009) Monocytes/macrophages in renal allograft rejection. Transplant Rev 23:199–208

    Article  Google Scholar 

  112. Tinckam KJ, Djurdjev O, Magil AB (2005) Glomerular monocytes predict worse outcomes after acute renal allograft rejection independent of C4d status. Kidney Int 68:1866–1874

    Article  PubMed  Google Scholar 

  113. Thoeny HC, Zumstein D, Simon-Zoula S et al (2006) Functional evaluation of transplanted kidneys with diffusion-weighted and BOLD MR imaging: initial experience 1. Radiology 241:812–821

    Article  PubMed  Google Scholar 

  114. Sadowski EA, Djamali A, Wentland AL et al (2010) Blood oxygen level-dependent and perfusion magnetic resonance imaging: detecting differences in oxygen bioavailability and blood flow in transplanted kidneys. Magn Reson Imaging 28:56–64

    Article  PubMed  Google Scholar 

  115. Wentland AL, Sadowski EA, Djamali A et al (2009) Quantitative MR measures of intrarenal perfusion in the assessment of transplanted kidneys: initial experience. Acad Radiol 16:1077–1085

    Article  PubMed  PubMed Central  Google Scholar 

  116. Khan S, Amin FM, Fliedner FP et al (2019) Investigating macrophage-mediated inflammation in migraine using ultrasmall superparamagnetic iron oxide-enhanced 3T magnetic resonance imaging. Cephalalgia 39:1407–1420

Download references

Acknowledgments

This study was supported by a grant from the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD, R01 HD081123A) and the National Institute of Arthritis and Musculoskeletal and Skin Diseases (R01AR054458).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heike E. Daldrup-Link.

Ethics declarations

Conflicts of interest

None

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daldrup-Link, H.E., Theruvath, A.J., Rashidi, A. et al. How to stop using gadolinium chelates for magnetic resonance imaging: clinical-translational experiences with ferumoxytol. Pediatr Radiol 52, 354–366 (2022). https://doi.org/10.1007/s00247-021-05098-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-021-05098-5

Keywords

Navigation