Skip to main content
Log in

Development and performance of SIAT bPET: a high-resolution and high-sensitivity MR-compatible brain PET scanner using dual-ended readout detectors

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Positron emission tomography/magnetic resonance imaging (PET/MRI) is a powerful tool for brain imaging, but the spatial resolution of the PET scanners currently used for brain imaging can be further improved to enhance the quantitative accuracy of brain PET imaging. The purpose of this study is to develop an MR-compatible brain PET scanner that can simultaneously achieve a uniform high spatial resolution and high sensitivity by using dual-ended readout depth encoding detectors.

Methods

The MR-compatible brain PET scanner, named SIAT bPET, consists of 224 dual-ended readout detectors. Each detector contains a 26 × 26 lutetium yttrium oxyorthosilicate (LYSO) crystal array of 1.4 × 1.4 × 20 mm3 crystal size read out by two 10 × 10 silicon photomultiplier (SiPM) arrays from both ends. The scanner has a detector ring diameter of 376.8 mm and an axial field of view (FOV) of 329 mm. The performance of the scanner including spatial resolution, sensitivity, count rate, scatter fraction, and image quality was measured. Imaging studies of phantoms and the brain of a volunteer were performed. The mutual interferences of the PET insert and the uMR790 3 T MRI scanner were measured, and simultaneous PET/MRI imaging of the brain of a volunteer was performed.

Results

A spatial resolution of better than 1.5 mm with an average of 1.2 mm within the whole FOV was obtained. A sensitivity of 11.0% was achieved at the center FOV for an energy window of 350–750 keV. Except for the dedicated RF coil, which caused a ~ 30% reduction of the sensitivity of the PET scanner, the MRI sequences running had a negligible effect on the performance of the PET scanner. The reduction of the SNR and homogeneity of the MRI images was less than 2% as the PET scanner was inserted to the MRI scanner and powered-on. High quality PET and MRI images of a human brain were obtained from simultaneous PET/MRI scans.

Conclusion

The SIAT bPET scanner achieved a spatial resolution and sensitivity better than all MR-compatible brain PET scanners developed up to date. It can be used either as a standalone brain PET scanner or a PET insert placed inside a commercial whole-body MRI scanner to perform simultaneous PET/MRI imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The dataset used and/or analyzed during the current study is available from the corresponding author on reasonable request.

References

  1. Pichler BJ, Kolb A, Nagele T, Schlemmer HP. PET/MRI: paving the way for the next generation of clinical multimodality imaging applications. J Nucl Med. 2010;51(3):333–6.

    Article  PubMed  Google Scholar 

  2. Catana C, Drzezga A, Heiss WD, Rosen BR. PET/MRI for neurologic applications. J Nucl Med. 2012;53(12):1916–25.

    Article  PubMed  Google Scholar 

  3. Vandenberghe S, Marsden PK. PET-MRI: a review of challenges and solutions in the development of integrated multimodality imaging. Phys Med Biol. 2015;60(4):R115–54.

    Article  PubMed  Google Scholar 

  4. Judenhofer MS, Cherry SR. Applications for preclinical PET/MRI. Semin Nucl Med. 2013;43(1):19–29.

    Article  PubMed  Google Scholar 

  5. Heiss WD. The potential of PET/MR for brain imaging. Eur J Nucl Med Mol Imaging. 2009;36:105–12.

    Article  Google Scholar 

  6. Eriksson L, Wienhard K, Eriksson M, Casey ME, Knoess C, Bruckbauer T, Hamill J, Schmand M, Gremillion T, Lenox M, et al. The ECAT HRRT: NEMA NEC evaluation of the HRRT system, the new high-resolution research tomograph. IEEE Trans Nucl Sci. 2002;49(5):2085–8.

    Article  Google Scholar 

  7. Won JY, Park H, Lee S, Son JW, Chung Y, Ko GB, Kim KY, Song J, Seo S, Ryu Y, et al. Development and initial results of a brain pet insert for simultaneous 7-Tesla PET/MRI using an FPGA-only signal digitization method. IEEE Trans Med Imaging. 2021;40(6):1579–90.

    Article  PubMed  Google Scholar 

  8. Nishikido F, Obata T, Suga M, Iwao Y, Tashima H, Yoshida E, Akram MSH, Yamaya T. Axial scalable add-on PET/MRI prototype based on four-layer DOI detectors integrated with a RF coil. Nucl Instrum Methods Phys Res Sect A. 2022;1040: 167239.

    Article  CAS  Google Scholar 

  9. Yamaya T, Hagiwara N, Obi T, Tsuda T, Kitamura K, Hasegawa T, Haneishi H, Inadama N, Yoshida E, Murayama H. Preliminary resolution performance of the prototype system for a 4-layer DOI-PET scanner: jPET-D4. IEEE Trans Nucl Sci. 2006;53(3):1123–8.

    Article  Google Scholar 

  10. Watanabe M, Saito A, Isobe T, Ote K, Yamada R, Moriya T, Omura T. Performance evaluation of a high-resolution brain PET scanner using four-layer MPPC DOI detectors. Phys Med Biol. 2017;62(17):7148–66.

    Article  CAS  PubMed  Google Scholar 

  11. Shao YP, Cherry SR, Farahani K, Meadors K, Siegel S, Silverman RW, Marsden PK. Simultaneous PET and MR imaging. Phys Med Biol. 1997;42(10):1965–70.

    Article  CAS  PubMed  Google Scholar 

  12. Catana C, Wu YB, Judenhofer MS, Qi JY, Pichler BJ, Cherry SR. Simultaneous acquisition of multislice PET and MR images: initial results with a MR-compatible PET scanner. J Nucl Med. 2006;47(12):1968–76.

    PubMed  Google Scholar 

  13. Judenhofer MS, Wehrl HF, Newport DF, Catana C, Siegel SB, Becker M, Thielscher A, Kneilling M, Lichy MP, Eichner M, et al. Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nat Med. 2008;14(4):459–65.

    Article  CAS  Google Scholar 

  14. Gsell W, Molinos C, Correcher C, Belderbos S, Wouters J, Junge S, Heidenreich M, Vande Velde G, Rezaei A, Nuyts J, et al. Characterization of a preclinical PET insert in a 7 tesla MRI scanner: beyond NEMA testing. Phys Med Biol. 2020;65(24):245016.

    Article  CAS  PubMed  Google Scholar 

  15. Son JW, Kim KY, Park JY, Kim K, Lee YS, Ko GB, Lee JS. SimPET: a preclinical PET insert for simultaneous PET/MR imaging. Mol Imag Biol. 2020;22(5):1208–17.

    Article  Google Scholar 

  16. Yamamoto S, Watabe T, Watabe H, Aoki M, Sugiyama E, Imaizumi M, Kanai Y, Shimosegawa E, Hatazawa J. Simultaneous imaging using Si-PM-based PET and MRI for development of an integrated PET/MRI system. Phys Med Biol. 2012;57(2):N1–13.

    Article  PubMed  Google Scholar 

  17. Yoon HS, Ko GB, Kwon SI, Lee CM, Ito M, Song IC, Lee DS, Hong SJ, Lee JS. Initial results of simultaneous PET/MRI experiments with an MRI-compatible silicon photomultiplier PET scanner. J Nucl Med. 2012;53(4):608–14.

    Article  CAS  Google Scholar 

  18. Stortz G, Thiessen JD, Bishop D, Khan MS, Kozlowski P, Retiere F, Schellenberg G, Shams E, Zhang XZ, Thompson CJ, et al. Performance of a PET insert for high-resolution small-animal PET/MRI at 7 Tesla. J Nucl Med. 2018;59(3):536–42.

    Article  CAS  PubMed  Google Scholar 

  19. Levin CS, Maramraju H, Khalighi MM, Deller TW, Delso G, Jansen F. Design features and mutual compatibility studies of the time-of-flight PET capable GE SIGNA PET/MR system. IEEE Trans Med Imaging. 2016;35(8):1907–14.

    Article  Google Scholar 

  20. Chen S, Gu Y, Yu H, Chen X, Cao T, Hu L, Shi H. NEMA NU2-2012 performance measurements of the united imaging uPMR790: an integrated PET/MR system. Eur J Nucl Med Mol Imaging. 2021;48(6):1726–35.

    Article  CAS  PubMed  Google Scholar 

  21. Delso G, Furst S, Jakoby B, Ladebeck R, Ganter C, Nekolla SG, Schwaiger M, Ziegler SI. Performance measurements of the Siemens mMR integrated whole-body PET/MR scanner. J Nucl Med. 2011;52(12):1914–22.

    Article  PubMed  Google Scholar 

  22. Kolb A, Wehrl HF, Hofmann M, Judenhofer MS, Eriksson L, Ladebeck R, Lichy MP, Byars L, Michel C, Schlemmer HP, et al. Technical performance evaluation of a human brain PET/MRI system. Eur Radiol. 2012;22(8):1776–88.

    Article  PubMed  Google Scholar 

  23. Jung JH, Choi Y, Jung J, Kim S, Lim HK, Im KC, Oh CH, Park HW, Kim KM, Kim JG. Development of PET/MRI with insertable PET for simultaneous PET and MR imaging of human brain. Med Phys. 2015;42(5):2354–63.

    Article  PubMed  Google Scholar 

  24. Nishikido F, Fujiwara M, Tashima H, Akram MSH, Suga M, Obata T, Yamaya T. Development of a full-ring add-on PET prototype: a head coil with DOI-PET detectors for integrated PET/MRI. Nucl Inst Methods Phys Res Sect A Accelerators Spectrometers Detectors and Associated Equipment. 2017;863:55–61.

    CAS  Google Scholar 

  25. Benlloch JM, Gonzalez AJ, Pani R, Preziosi E, Jackson C, Murphy J, Barbera J, Correcher C, Aussenhofer S, Gareis D, et al. The Mindview project: first results. Eur Psychiatry. 2018;50:21–7.

    Article  PubMed  Google Scholar 

  26. Del Guerra A, Ahmad S, Avram M, Belcari N, Berneking A, Biagi L, Bisogni MG, Brandl F, Cabello J, Camarlinghi N, et al. TRIMAGE: a dedicated trimodality (PET/MR/EEG) imaging tool for schizophrenia. Eur Psychiat. 2018;50:7–20.

    Article  PubMed  Google Scholar 

  27. Lee BJ, Watkins RD, Lee KS, Chang CM, Levin CS. Performance evaluation of RF coils integrated with an RF-penetrable PET insert for simultaneous PET/MRI. Magn Reson Med. 2019;81(2):1434–46.

    Article  PubMed  Google Scholar 

  28. Yang Q, Kuang Z, Sang Z, Yang Y, Du J. Performance comparison of two signal multiplexing readouts for SiPM-based pet detector. Phys Med Biol. 2019;64(23):23NT02.

  29. Deng P, Zhao L, Lu J, Li B, Dong R, Liu S, An Q. Prototype design of singles processing unit for the small animal PET. J Instrum. 2018;13:T05007.

  30. Chen K, Zhao L, Zhang L, Lu J, Qin J, Liu S, An Q. Testing of singles processing unit for a brain PET. in 2021 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC). 2021.

  31. Zeng TY, Gao J, Gao DF, Kuang ZH, Sang ZR, Wang XH, Hu LZ, Chen Q, Chu X, Liang D, et al. A GPU-accelerated fully 3D OSEM image reconstruction for a high-resolution small animal PET scanner using dual-ended readout detectors. Phys Med Biol. 2020;65(24):245007.

  32. Cherry SR, Sung-Cheng H. Effects of scatter on model parameter estimates in 3D PET studies of the human brain. IEEE Trans Nucl Sci. 1995;42(4):1174–9.

    Article  Google Scholar 

  33. NEM Association. NEMA Standards Publication NU4–2008: Performance measurements of small animal positron emission tomographs. Rosslyn, VA: National Electrical Manufacturers Association; 2008.

    Google Scholar 

  34. NEM Association. NEMA Standards Publication NU-2 2012: Performance measurements of positron emission tomographs. Rosslyn, VA: National Electrical Manufacturers Association; 2012.

    Google Scholar 

  35. Gonzalez AJ, Gonzalez-Montoro A, Vidal LF, Barbera J, Aussenhofer S, Hernandez L, Moliner L, Sanchez F, Correcher C, Pincay EJ, et al. Initial results of the MINDView PET insert inside the 3T mMR. IEEE Trans Radiat Plasma Med Sci. 2019;3(3):343–51.

    Article  Google Scholar 

  36. Belcari N, Bisogni MG, Camarlinghi N, Carra P, Cerello P, Morrocchi M, Patera A, Sportelli G, Guerra AD. Design and detector performance of the PET component of the TRIMAGE PET/MR/EEG scanner. IEEE Trans Radiat Plasma Med Sci. 2019;3(3):292–301.

    Article  Google Scholar 

  37. Kuang ZH, Wang XH, Ren N, Wu S, Gao J, Zeng TY, Gao DF, Zhang CH, Sang ZR, Hu ZL, et al. Design and performance of SIAT aPET: a uniform high-resolution small animal PET scanner using dual-ended readout detectors. Phys Med Biol. 2020;65(23):235013.

  38. Sang ZR, Kuang ZH, Wang XH, Ren N, Wu S, Niu M, Cong LH, Liu Z, Hu ZL, Sun T, et al. Mutual interferences between SIAT aPET insert and a 3 T uMR 790 MRI scanner. Phys Med Biol. 2023;68(2):025021.

Download references

Acknowledgements

The authors thank Keren Chen, Lingyan Zhang, Jiaming Lu, Lei Zhao, and Qi An from University of Science and Technology, China for developing the singles processing units of SIAT bPET.

Funding

This work was supported by the National Natural Science Foundation of China (62101539, 12105356, 12375358), the Basic Research Program of Shenzhen (JCYJ20220818101612027), the Scientific Instrument Innovation Team of the Chinese Academy of Sciences (GJJSTD20180002), the Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province (2023B1212060052).

Author information

Authors and Affiliations

Authors

Contributions

PET detector design and measurements: Z. Kuang, M. Niu, J. Du; PET scanner integration, performance measurement, data analysis, phantom and volunteer scan: Z. Kuang, Z. Sang, L. Cong, S. Kinyanjui, Z. Liu; SiPM readout, signal processing and power supply electronics: Z. Kuang, Z. Sang, X. Wang, S. Wu, J. Du; Data control and acquisition software: N. Ren, Z. Kuang; Sinogram generation, image reconstruction, normalization, random, scatter and attenuation correction: Z. Kuang, T. Zeng, Z. Hu, T. Sun, N. Ren; Dedicated RF coil development: Q. Chen, Y. Li; Mutual interference measurement and simultaneous PET/MRI imaging: Z. Kuang, Z. Sang, Q. Chen, N. Ren, C. Tie; Overall project design and funding secure: Y. Yang, D. Liang, X. Liu, H. Zheng; Manuscript drafting and revision: Z. Kuang, Y. Yang, H. Zheng; Reading and approval of the final manuscript: all authors.

Corresponding authors

Correspondence to Hairong Zheng or Yongfeng Yang.

Ethics declarations

Ethics approval

The volunteer scans of this work were approved by the Ethics Committee of Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (approval number: SIAT-IRB-210715-H0566).

Consent to participate

Written informed consent forms for imaging were signed by all participants.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuang, Z., Sang, Z., Ren, N. et al. Development and performance of SIAT bPET: a high-resolution and high-sensitivity MR-compatible brain PET scanner using dual-ended readout detectors. Eur J Nucl Med Mol Imaging 51, 346–357 (2024). https://doi.org/10.1007/s00259-023-06458-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-023-06458-z

Keywords

Navigation