Skip to main content

Advertisement

Log in

Preclinical evaluation of a dual-receptor targeted tracer [68Ga]Ga-HX01 in 10 different subcutaneous and orthotopic tumor models

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The integrin αvβ3 and aminopeptidase N (APN/CD13) play vital roles in the tumor angiogenesis process. They are highly expressed in a variety of tumor cells and proliferating endothelial cells during angiogenesis, which have been considered as highly promising targets for tumor imaging. Arginine-glycine-aspartic (RGD) and asparagine-glycine-arginine (NGR) are two peptides specifically binding to the integrin αvβ3 and CD13, respectively. In this study, we optimized our previously developed probe and preclinically evaluated the new integrin αvβ3 and CD13 dual-targeted probe, NOTA-RGD-NGR (denoted as HX01) radiolabeled with 68Ga, in 10 different subcutaneous and orthotopic tumor models.

Methods

The specific activity and radiochemical purity of [68Ga]Ga-HX01 were identified. The dual-receptor targeting ability was confirmed by a series of blocking studies and partly muted tracers using BxPC-3 xenograft model. The dynamic imaging study and dose escalation study were explored to determine the optimal imaging time point and dosage in the BxPC-3 xenograft model. Next, we established a variety of subcutaneous and orthotopic tumor models including pancreas (BxPC-3), breast (MCF-7), gallbladder (NOZ), lung (HCC827), ovary (SK-OV-3), colorectal (HCT-8), liver (HuH-7), stomach (NUGC-4), and glioma (U87) cancers. All models underwent [68Ga]Ga-HX01 PET/CT imaging about 2 weeks post-inoculation, with a subset of them undergoing [18F]FDG PET/CT scan performed concurrently, and their results were compared. In addition, ex vivo biodistribution studies were also performed for verifying the semi-quantitative results of the non-invasive PET images.

Results

[68Ga]Ga-HX01 significantly outperformed single target probes in the BxPC-3 xenograft model. All blocking and single target groups exhibited significantly descending tumor uptake. The high tumor uptakes were found in BxPC-3, MCF-7, and NOZ subcutaneous tumors (%ID/g > 1.1), while middle uptakes were observed in HCC827, SK-OV-3, HCT-8, and HuH-7 subcutaneous tumor (%ID/g 0.7–1.0). Due to the low background, the tumor-to-muscle and tumor-to-blood ratios of [68Ga]Ga-HX01 were higher than that of [18F]FDG.

Conclusions

[68Ga]Ga-HX01, as a dual target imaging agent, exhibited superior in vivo performance in different subcutaneous and orthotopic mice models of human tumors over [18F]FDG and its respectively mono-receptor targeted agents, which warrants the future clinical translation for tumor imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data and materials are available from the corresponding authors upon reasonable request.

References

  1. Rowe SP, Pomper MG. Molecular imaging in oncology: current impact and future directions. CA Cancer J Clin. 2022;72:333–52. https://doi.org/10.3322/caac.21713.

    Article  PubMed  Google Scholar 

  2. Luo H, Hong H, Yang SP, Cai W. Design and applications of bispecific heterodimers: molecular imaging and beyond. Mol Pharm. 2014;11:1750–61. https://doi.org/10.1021/mp500115x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Boehm T, Folkman J, Browder T, O’Reilly MS. Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature. 1997;390:404–7. https://doi.org/10.1038/37126.

    Article  CAS  PubMed  Google Scholar 

  4. Tonini T, Rossi F, Claudio PP. Molecular basis of angiogenesis and cancer. Oncogene. 2003;22:6549–56. https://doi.org/10.1038/sj.onc.1206816.

  5. Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discov. 2022;12:31–46. https://doi.org/10.1158/2159-8290.

    Article  CAS  PubMed  Google Scholar 

  6. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971;285:1182–6. https://doi.org/10.1056/NEJM197111182852108.

    Article  CAS  PubMed  Google Scholar 

  7. Shinderman-Maman E, Cohen K, Weingarten C, Nabriski D, Twito O, Baraf L, et al. The thyroid hormone-αvβ3 integrin axis in ovarian cancer: regulation of gene transcription and MAPK-dependent proliferation. Oncogene. 2016;35:1977–87. https://doi.org/10.1038/onc.2015.262.

    Article  CAS  PubMed  Google Scholar 

  8. Yang YSH, Ko PJ, Pan YS, Lin HY, Whang-Peng J, Davis PJ, et al. Role of thyroid hormone-integrin αvβ3-signal and therapeutic strategies in colorectal cancers. J Biomed Sci. 2021;28:24. https://doi.org/10.1186/s12929-021-00719-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Stucci S, Tucci M, Passarelli A, Silvestris F. Avβ3 integrin: pathogenetic role in osteotropic tumors. Crit Rev Oncol Hematol. 2015;96:183–93. https://doi.org/10.1016/j.critrevonc.2015.05.018.

    Article  PubMed  Google Scholar 

  10. Barnieh FM, Loadman PM, Falconer RA. Is tumour-expressed aminopeptidase N (APN/CD13) structurally and functionally unique? Biochim Biophys Acta Rev Cancer. 2021;1876:188641. https://doi.org/10.1016/j.bbcan.2021.188641.

  11. Pang L, Zhang N, Xia Y, Wang D, Wang G, Meng X. Serum APN/CD13 as a novel diagnostic and prognostic biomarker of pancreatic cancer. Oncotarget. 2016;7:77854–64. https://doi.org/10.18632/oncotarget.12835.

  12. Zhang Q, Wang J, Zhang H, Zhao D, Zhang Z, Zhang S. Expression and clinical significance of aminopeptidase N/CD13 in non-small cell lung cancer. J Cancer Res Ther. 2015;11:223–8. https://doi.org/10.4103/0973-1482.138007.

    Article  CAS  PubMed  Google Scholar 

  13. Li L, Chen X, Yu J, Yuan S. Preliminary clinical application of RGD-containing peptides as PET radiotracers for imaging tumors. Front Oncol. 2022;12:837952. https://doi.org/10.3389/fonc.2022.837952.

  14. Zhu L, Ding Z, Li X, Wei H, Chen Y. Research progress of radiolabeled Asn-Gly-Arg (NGR) peptides for imaging and therapy. Mol Imaging. 2020;19:1536012120934957. https://doi.org/10.1177/1536012120934957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rubtsov MA, Syrkina MS, Aliev G. RGD-based therapy: principles of selectivity. Curr Pharm Des. 2016;22:932–52. https://doi.org/10.2174/1381612822666151209153636.

    Article  CAS  PubMed  Google Scholar 

  16. Judmann B, Braun D, Wängler B, Schirrmacher R, Fricker G, Wängler C. Current state of radiolabeled heterobivalent peptidic ligands in tumor imaging and therapy. Pharmaceuticals (Basel). 2020;13:173. https://doi.org/10.3390/ph13080173.

    Article  CAS  PubMed  Google Scholar 

  17. Gai Y, Jiang Y, Long Y, Sun L, Liu Q, Qin C, et al. Evaluation of an integrin αvβ3 and aminopeptidase N dual-receptor targeting tracer for breast cancer imaging. Mol Pharm. 2020;17:349–58. https://doi.org/10.1021/acs.molpharmaceut.9b01134.

    Article  CAS  PubMed  Google Scholar 

  18. Sun L, Gai Y, Li Z, Li H, Li J, Muschler J, et al. Heterodimeric RGD-NGR PET tracer for the early detection of pancreatic cancer. Mol Imaging Biol. 2022;24:580–9. https://doi.org/10.1007/s11307-022-01704-6.

    Article  CAS  PubMed  Google Scholar 

  19. Long Y, Shao F, Ji H, Song X, Lv X, Xia X, et al. Evaluation of a CD13 and integrin αvβ3 dual-receptor targeted tracer 68Ga-NGR-RGD for ovarian tumor imaging: comparison with 18F-FDG. Front Oncol. 2022;12:884554. https://doi.org/10.3389/fonc.2022.884554.

  20. Avraamides CJ, Garmy-Susini B, Varner JA. Integrins in angiogenesis and lymphangiogenesis. Nat Rev Cancer. 2008;8:604–17. https://doi.org/10.1038/nrc2353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Curnis F, Gasparri A, Sacchi A, Cattaneo A, Magni F, Corti A. Targeted delivery of IFNgamma to tumor vessels uncouples antitumor from counterregulatory mechanisms. Cancer Res. 2005;65:2906–13. https://doi.org/10.1158/0008-5472.

    Article  PubMed  Google Scholar 

  22. Liolios C, Sachpekidis C, Kolocouris A, Dimitrakopoulou-Strauss A, Bouziotis P. PET diagnostic molecules utilizing multimeric cyclic RGD peptide analogs for imaging integrin αvβ3 receptors. Molecules. 2021;26:1792. https://doi.org/10.3390/molecules26061792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen X, Tohme M, Park R, Hou Y, Bading JR, Conti PS. Micro-PET imaging of alphavbeta3-integrin expression with 18F-labeled dimeric RGD peptide. Mol Imaging. 2004;3:96–104. https://doi.org/10.1162/1535350041464892.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang J, Niu G, Lang L, Li F, Fan X, Yan X, et al. Clinical translation of a dual integrin αvβ3- and gastrin-releasing peptide receptor-targeting PET radiotracer, 68Ga-BBN-RGD. J Nucl Med. 2017;58:228–34. https://doi.org/10.2967/jnumed.116.177048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li ZB, Wu Z, Chen K, Ryu EK, Chen X. 18F-labeled BBN-RGD heterodimer for prostate cancer imaging. J Nucl Med. 2008;49:453–61. https://doi.org/10.2967/jnumed.107.048009.

    Article  CAS  PubMed  Google Scholar 

  26. Zheng Y, Wang H, Tan H, Cui X, Yao S, Zang J, et al. Evaluation of lung cancer and neuroendocrine neoplasm in a single scan by targeting both somatostatin receptor and integrin αvβ3. Clin Nucl Med. 2019;44:687–94. https://doi.org/10.1097/RLU.0000000000002680.

    Article  PubMed  Google Scholar 

  27. Liu B, Zhang Z, Wang H, Yao S. Preclinical evaluation of a dual sstr2 and integrin αvβ3-targeted heterodimer [68Ga]-NOTA-3PEG4-TATE-RGD. Bioorg Med Chem. 2019;27:115094. https://doi.org/10.1016/j.bmc.2019.115094.

  28. Liu W, Ma H, Li F, Cai H, Liang R, Chen X, et al. PET imaging of VEGFR and integrins in glioma tumor xenografts using 89Zr labelled heterodimeric peptide. Bioorg Med Chem. 2022;59:116677. https://doi.org/10.1016/j.bmc.2022.116677.

  29. Cheng X, Hübner R, von Kiedrowski V, Fricker G, Schirrmacher R, Wängler C, et al. Design, synthesis, in vitro and in vivo evaluation of heterobivalent SiFAlin-modified peptidic radioligands targeting both integrin αvβ3 and the MC1 receptor-suitable for the specific visualization of melanomas? Pharmaceuticals (Basel). 2021;14:547. https://doi.org/10.3390/ph14060547.

    Article  CAS  PubMed  Google Scholar 

  30. Jiang Y, Long Y, Ji H, Qiao P, Liu Q, Xia X, et al. Development and evaluation of a peptide heterodimeric tracer targeting CXCR4 and integrin αvβ3 for pancreatic cancer imaging. Pharmaceutics. 2022;14:1791. https://doi.org/10.3390/pharmaceutics14091791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li D, Zhao X, Zhang L, Li F, Ji N, Gao Z, et al. (68)Ga-PRGD2 PET/CT in the evaluation of glioma: a prospective study. Mol Pharm. 2014;11:3923–9. https://doi.org/10.1021/mp5003224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Beer AJ, Grosu AL, Carlsen J, Kolk A, Sarbia M, Stangier I, et al. [18F]galacto-RGD positron emission tomography for imaging of alphavbeta3 expression on the neovasculature in patients with squamous cell carcinoma of the head and neck. Clin Cancer Res. 2007;13:6610–6. https://doi.org/10.1158/1078-0432.

    Article  CAS  PubMed  Google Scholar 

  33. Gao S, Wu H, Li W, Zhao S, Teng X, Lu H, et al. A pilot study imaging integrin αvβ3 with RGD PET/CT in suspected lung cancer patients. Eur J Nucl Med Mol Imaging. 2015;42:2029–37. https://doi.org/10.1007/s00259-015-3119-1.

    Article  CAS  PubMed  Google Scholar 

  34. Van Der Gucht A, Pomoni A, Jreige M, Allemann P, Prior JO. 68Ga-NODAGA-RGDyK PET/CT imaging in esophageal cancer: first-in-human imaging. Clin Nucl Med. 2016;41:e491–2. https://doi.org/10.1097/RLU.0000000000001365.

    Article  PubMed  Google Scholar 

  35. Zhang J, Mao F, Niu G, Peng L, Lang L, Li F, et al. 68Ga-BBN-RGD PET/CT for GRPR and integrin αvβ3 imaging in patients with breast cancer. Theranostics. 2018;8:1121–30. https://doi.org/10.7150/thno.22601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sanz B, Perez I, Beitia M, Errarte P, Fernández A, Blanco L, et al. Aminopeptidase N activity predicts 5-year survival in colorectal cancer patients. J Investig Med. 2015;63:740–6. https://doi.org/10.1097/JIM.0000000000000199.

    Article  CAS  PubMed  Google Scholar 

  37. Faintuch BL, Oliveira EA, Targino RC, Moro AM. Radiolabeled NGR phage display peptide sequence for tumor targeting. Appl Radiat Isot. 2014;86:41–5. https://doi.org/10.1016/j.apradiso.2013.12.035.

    Article  CAS  PubMed  Google Scholar 

  38. Wood LD, Canto MI, Jaffee EM, Simeone DM. Pancreatic cancer: pathogenesis, screening, diagnosis, and treatment. Gastroenterology. 2022;163:386–402. https://doi.org/10.1053/j.gastro.2022.03.056.

    Article  PubMed  Google Scholar 

  39. Xiao Y, Bi M, Guo H, Li M. Multi-omics approaches for biomarker discovery in early ovarian cancer diagnosis. EBioMedicine. 2022;79:104001. https://doi.org/10.1016/j.ebiom.2022.104001.

  40. Roa JC, García P, Kapoor VK, Maithel SK, Javle M, Koshiol J. Gallbladder cancer [published correction appears in Nat Rev Dis Primers. 2022;8(1):75]. Nat Rev Dis Primers. 2022;8:69. https://doi.org/10.1038/s41572-022-00398-y.

  41. Jayaprakasam VS, Paroder V, Schöder H. Variants and pitfalls in PET/CT imaging of gastrointestinal cancers. Semin Nucl Med. 2021;51:485–501. https://doi.org/10.1053/j.semnuclmed.2021.04.001.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Jeng LB, Changlai SP, Shen YY, Lin CC, Tsai CH, Kao CH. Limited value of 18F-2-deoxyglucose positron emission tomography to detect hepatocellular carcinoma in hepatitis B virus carriers. Hepatogastroenterology. 2003;50:2154–6.

    PubMed  Google Scholar 

  43. Lavanya V, Malik IM, Nallapareddy K, Srivastava M, Valiyaveettil D, Ahmed SF. Correlation of target volumes on magnetic resonance imaging and prostate-specific membrane antigen brain scans in the treatment planning of glioblastomas. Indian J Nucl Med. 2022;37:245–8. https://doi.org/10.4103/ijnm.ijnm_189_2.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Jureidini R, da Cunha JE, Takeda F, Namur GN, Ribeiro TC, Patzina R, et al. Evaluation of microvessel density and p53 expression in pancreatic adenocarcinoma. Clinics (Sao Paulo). 2016;71:315–9. https://doi.org/10.6061/clinics/2016(06)05.

    Article  PubMed  Google Scholar 

  45. Haubner R, Weber WA, Beer AJ, Vabuliene E, Reim D, Sarbia M, et al. Noninvasive visualization of the activated alphavbeta3 integrin in cancer patients by positron emission tomography and [18F]Galacto-RGD. PLoS Med. 2005;2:e70. https://doi.org/10.1371/journal.pmed.0020070.

  46. Beer AJ, Pelisek J, Heider P, Saraste A, Reeps C, Metz S, et al. PET/CT imaging of integrin αvβ3 expression in human carotid atherosclerosis. JACC Cardiovasc Imaging. 2014;7(2):178–87. https://doi.org/10.1016/j.jcmg.2013.12.003.

    Article  PubMed  Google Scholar 

  47. Chen X, Park R, Shahinian AH, Bading JR, Conti PS. Pharmacokinetics and tumor retention of 125I-labeled RGD peptide are improved by PEGylation. Nucl Med Biol. 2004;31:11–9. https://doi.org/10.1016/j.nucmedbio.2003.07.003.

    Article  CAS  PubMed  Google Scholar 

  48. Chen H, Jacobson O, Niu G, Weiss ID, Kiesewetter DO, Liu Y, et al. Novel “add-on” molecule based on Evans blue confers superior pharmacokinetics and transforms drugs to theranostic agents. J Nucl Med. 2017;58:590–7. https://doi.org/10.2967/jnumed.116.182097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Uehara T, Yokoyama M, Suzuki H, Hanaoka H, Arano Y. A gallium-67/68-labeled antibody fragment for immuno-SPECT/PET shows low renal radioactivity without loss of tumor uptake. Clin Cancer Res. 2018;15(24):3309–16. https://doi.org/10.1158/1078-0432.CCR-18-0123.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Changyu Shan from Hexin (Suzhou) Pharmaceutical Technology Co., Ltd. and Jinquan Han from Wuhan-Britain China School for their help with cell culture and animal model preparing.

Funding

This work was supported by the National Natural Science Foundation of China (No. 81801738 and 82030052).

Author information

Authors and Affiliations

Authors

Contributions

Yongkang Gai and Xiaoli Lan: study design and manuscription revision. Xiaoying Lv and Xiangming Song: manuscript writing. Dexing Zeng, Yongkang Gai, Xiaoying Lv, and Xiangming Song: tracer synthesis and identification. Xiaoying Lv, Xiangming Song, and Yu Long: animal experiment, image acquisition, and interpretation.

Corresponding authors

Correspondence to Xiaoli Lan or Yongkang Gai.

Ethics declarations

Ethical approval

All animal studies were conducted in accordance with the guidelines of the Institutional Animal Care and Use Committee of Tongji Medical College, Huazhong University of Science and Technology.

Competing interests

Dexing Zeng and Yongkang Gai hold the patent of the compound HX01. All other authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1.86 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, X., Song, X., Long, Y. et al. Preclinical evaluation of a dual-receptor targeted tracer [68Ga]Ga-HX01 in 10 different subcutaneous and orthotopic tumor models. Eur J Nucl Med Mol Imaging 51, 54–67 (2023). https://doi.org/10.1007/s00259-023-06412-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-023-06412-z

Keywords

Navigation