Skip to main content

Advertisement

Log in

Heterodimeric RGD-NGR PET Tracer for the Early Detection of Pancreatic Cancer

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Pancreatic ductal adenocarcinoma (PDAC) is the most lethal gastrointestinal cancer, and its poor prognosis is highly associated with the lack of an efficient early detection technology. Here, we report that RGD-NGR heterodimer labeled with PET isotope could be applied in PDAC early detection.

Procedures

The RGD-NGR tracer was first compared with its corresponding monomeric counterparts via PET imaging studies using mice bearing a subcutaneous BxPC3 tumor. Subsequently, the RGD-NGR tracer was evaluated in autochthonous mouse models with spontaneously developed late stage PanIN lesions (KCER mice) or PDAC (KPC mice) via both PET imaging studies and ex vivo biodistribution studies. Furthermore, a comparison between 2-deoxy-2[18F]fluoro-D-glucose ([18F]F-FDG) and the RGD-NGR tracer was conducted via PET imaging of the same KCH mouse bearing spontaneously developed PDAC. H&E staining was performed to confirm the malignant pancreatic tissue in the KCH mouse. Immunofluorescence staining was performed to confirm the expression of integrin αVβ3 and CD13.

Results

The RGD-NGR tracer exhibited improved in vivo performance as compared with its corresponding monomeric counterparts on the subcutaneous BxPC3 tumor mouse model. Subsequent evaluation in autochthonous mouse models demonstrated its capability to detect both pre-malignant and malignant pancreases. Further comparison with [18F]F-FDG revealed the superiority of the proposed heterodimer in imaging spontaneously developed PDAC. H&E staining confirmed the malignant pancreatic tissue in the KCH mouse, while the expression of both integrin αVβ3 and CD13 receptors was demonstrated with immunofluorescence staining.

Conclusion

The proposed RGD-NGR heterodimer possesses the potential to be applied in the PDAC early detection for high-risk populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A (2021) Cancer statistics, 2021. CA Cancer J Clin 71:7–33. https://doi.org/10.3322/caac.21654

    Article  PubMed  Google Scholar 

  2. Amanam I, Chung V (2018) Targeted Therapies for pancreatic cancer. Cancers (Basel) 10:. https://doi.org/10.3390/cancers10020036

  3. Ghadirian P, Lynch HT, Krewski D (2003) Epidemiology of pancreatic cancer: an overview. Cancer Detect Prev 27:87–93. https://doi.org/10.1016/s0361-090x(03)00002-3

    Article  CAS  PubMed  Google Scholar 

  4. Michaud DS (2004) Epidemiology of pancreatic cancer. Minerva Chir 59:99–111

    CAS  PubMed  Google Scholar 

  5. Egawa S, Takeda K, Fukuyama S et al (2004) Clinicopathological aspects of small pancreatic cancer. Pancreas 28:235–240. https://doi.org/10.1097/00006676-200404000-00004

    Article  PubMed  Google Scholar 

  6. Ariyama J, Suyama M, Satoh K, Sai J (1998) Imaging of small pancreatic ductal adenocarcinoma. Pancreas 16:396–401. https://doi.org/10.1097/00006676-199804000-00030

    Article  CAS  PubMed  Google Scholar 

  7. Neoptolemos JP, Stocken DD, Friess H et al (2004) A randomized trial of chemoradiotherapy and chemotherapy after resection of pancreatic cancer. N Engl J Med 350:1200–1210. https://doi.org/10.1056/NEJMoa032295

    Article  CAS  PubMed  Google Scholar 

  8. Sohn TA, Yeo CJ, Cameron JL et al (2000) Resected adenocarcinoma of the pancreas-616 patients: results, outcomes, and prognostic indicators. J Gastrointest Surg Off J Soc Surg Aliment Tract 4:567–579. https://doi.org/10.1016/s1091-255x(00)80105-5

    Article  CAS  Google Scholar 

  9. Saad ED, Machado MC, Wajsbrot D et al (2002) Pretreatment CA 19–9 level as a prognostic factor in patients with advanced pancreatic cancer treated with gemcitabine. Int J Gastrointest Cancer 32:35–41. https://doi.org/10.1385/IJGC:32:1:35

    Article  CAS  PubMed  Google Scholar 

  10. Argani P, Iacobuzio-Donahue C, Ryu B et al (2001) Mesothelin is overexpressed in the vast majority of ductal adenocarcinomas of the pancreas: identification of a new pancreatic cancer marker by serial analysis of gene expression (SAGE). Clin cancer Res an Off J Am Assoc Cancer Res 7:3862–3868

    CAS  Google Scholar 

  11. Rocha Lima CMS, Centeno B (2002) Update on pancreatic cancer. Curr Opin Oncol 14:424–430. https://doi.org/10.1097/00001622-200207000-00010

    Article  PubMed  Google Scholar 

  12. Hingorani SR, Petricoin EF, Maitra A et al (2003) Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 4:437–450. https://doi.org/10.1016/s1535-6108(03)00309-x

    Article  CAS  PubMed  Google Scholar 

  13. Brand RE, Matamoros A (1998) Imaging techniques in the evaluation of adenocarcinoma of the pancreas. Dig Dis 16:242–252. https://doi.org/10.1159/000016872

    Article  CAS  PubMed  Google Scholar 

  14. Rohren EM, Turkington TG, Coleman RE (2004) Clinical applications of PET in oncology. Radiology 231:305–332. https://doi.org/10.1148/radiol.2312021185

    Article  PubMed  Google Scholar 

  15. von Schulthess GK, Steinert HC, Hany TF (2006) Integrated PET/CT: current applications and future directions. Radiology 238:405–422. https://doi.org/10.1148/radiol.2382041977

    Article  Google Scholar 

  16. Nakamoto R, Duan H, Ferri V et al (2021) Biodistribution and safety of 18F-FP-R01-MG-F2 knottin PET tracer in patients with pancreatic cancer. J Nucl Med 62:1008

    Article  Google Scholar 

  17. Ray K (2017) Biomarkers for the early detection of PDAC. Nat Rev Gastroenterol Hepatol 14:505. https://doi.org/10.1038/nrgastro.2017.111

    Article  PubMed  Google Scholar 

  18. Mammen M, Choi S-K, Whitesides GM (1998) Polyvalent Interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew Chem Int Ed Engl 37:2754–2794. https://doi.org/10.1002/(SICI)1521-3773(19981102)37:20%3c2754::AID-ANIE2754%3e3.0.CO;2-3

    Article  PubMed  Google Scholar 

  19. Zhang J, Mao F, Niu G et al (2018) (68)Ga-BBN-RGD PET/CT for GRPR and integrin α(v)β(3) imaging in patients with breast cancer. Theranostics 8:1121–1130. https://doi.org/10.7150/thno.22601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Desgrosellier JS, Cheresh DA (2010) Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 10:9–22. https://doi.org/10.1038/nrc2748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Brooks PC (1996) Role of integrins in angiogenesis. Eur J Cancer 32A:2423–2429. https://doi.org/10.1016/s0959-8049(96)00381-4

    Article  CAS  PubMed  Google Scholar 

  22. Mizejewski GJ (1999) Role of integrins in cancer: survey of expression patterns. Proc Soc Exp Biol Med Soc Exp Biol Med (New York, NY) 222:124–138. https://doi.org/10.1046/j.1525-1373.1999.d01-122.x

    Article  CAS  Google Scholar 

  23. Brooks PC, Clark RA, Cheresh DA (1994) Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 264:569–571. https://doi.org/10.1126/science.7512751

    Article  CAS  PubMed  Google Scholar 

  24. Hosotani R, Kawaguchi M, Masui T et al (2002) Expression of integrin alphaVbeta3 in pancreatic carcinoma: relation to MMP-2 activation and lymph node metastasis. Pancreas 25:e30–e35. https://doi.org/10.1097/00006676-200208000-00021

    Article  PubMed  Google Scholar 

  25. Kubas H, Schäfer M, Bauder-Wüst U et al (2010) Multivalent cyclic RGD ligands: influence of linker lengths on receptor binding. Nucl Med Biol 37:885–891. https://doi.org/10.1016/j.nucmedbio.2010.06.005

    Article  CAS  PubMed  Google Scholar 

  26. Haubner R, Weber WA, Beer AJ et al (2005) Noninvasive visualization of the activated alphavbeta3 integrin in cancer patients by positron emission tomography and [18F]Galacto-RGD. PLoS Med 2:e70. https://doi.org/10.1371/journal.pmed.0020070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen H, Niu G, Wu H, Chen X (2016) Clinical application of radiolabeled RGD peptides for PET imaging of integrin αvβ3. Theranostics 6:78–92. https://doi.org/10.7150/thno.13242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li Z-B, Cai W, Cao Q et al (2007) (64)Cu-labeled tetrameric and octameric RGD peptides for small-animal PET of tumor alpha(v)beta(3) integrin expression. J Nucl Med 48:1162–1171. https://doi.org/10.2967/jnumed.107.039859

    Article  CAS  PubMed  Google Scholar 

  29. Yoshimoto M, Hayakawa T, Mutoh M et al (2012) In vivo SPECT imaging with 111In-DOTA-c(RGDfK) to detect early pancreatic cancer in a hamster pancreatic carcinogenesis model. J Nucl Med 53:765–771. https://doi.org/10.2967/jnumed.111.099630

    Article  PubMed  Google Scholar 

  30. Trajkovic-Arsic M, Mohajerani P, Sarantopoulos A et al (2014) Multimodal molecular imaging of integrin αvβ3 for in vivo detection of pancreatic cancer. J Nucl Med 55:446–451. https://doi.org/10.2967/jnumed.113.129619

    Article  CAS  PubMed  Google Scholar 

  31. Ikeda N, Nakajima Y, Tokuhara T et al (2003) Clinical significance of aminopeptidase N/CD13 expression in human pancreatic carcinoma. Clin cancer Res an Off J Am Assoc Cancer Res 9:1503–1508

    CAS  Google Scholar 

  32. van Hensbergen Y, Broxterman HJ, Rana S et al (2004) Reduced growth, increased vascular area, and reduced response to cisplatin in CD13-overexpressing human ovarian cancer xenografts. Clin Cancer Res 10:1180–1191. https://doi.org/10.1158/1078-0432.CCR-0482-3

    Article  PubMed  Google Scholar 

  33. Surowiak P, Drag M, Materna V et al (2006) Expression of aminopeptidase N/CD13 in human ovarian cancers. Int J Gynecol cancer Off J Int Gynecol Cancer Soc 16:1783–1788. https://doi.org/10.1111/j.1525-1438.2006.00657.x

    Article  CAS  Google Scholar 

  34. Zhang Q, Wang J, Zhang H et al (2015) Expression and clinical significance of aminopeptidase N/CD13 in non-small cell lung cancer. J Cancer Res Ther 11:223–228. https://doi.org/10.4103/0973-1482.138007

    Article  CAS  PubMed  Google Scholar 

  35. Tokuhara T, Hattori N, Ishida H et al (2006) Clinical significance of aminopeptidase N in non–small cell lung cancer. Clin Cancer Res 12:3971–3978. https://doi.org/10.1158/1078-0432.CCR-06-0338

    Article  CAS  PubMed  Google Scholar 

  36. Hashida H, Takabayashi A, Kanai M et al (2002) Aminopeptidase N is involved in cell motility and angiogenesis: its clinical significance in human colon cancer. Gastroenterology 122:376–386. https://doi.org/10.1053/gast.2002.31095

    Article  CAS  PubMed  Google Scholar 

  37. Curnis F, Arrigoni G, Sacchi A et al (2002) Differential binding of drugs containing the NGR motif to CD13 isoforms in tumor vessels, epithelia, and myeloid cells. Cancer Res 62:867–874

    CAS  PubMed  Google Scholar 

  38. Faintuch BL, Oliveira EA, Targino RC, Moro AM (2014) Radiolabeled NGR phage display peptide sequence for tumor targeting. Appl Radiat Isot 86:41–45. https://doi.org/10.1016/j.apradiso.2013.12.035

    Article  CAS  PubMed  Google Scholar 

  39. Gai Y, Jiang Y, Long Y et al (2020) Evaluation of an integrin αvβ3 and aminopeptidase N dual-receptor targeting tracer for breast cancer imaging. Mol Pharm 17:349–358. https://doi.org/10.1021/acs.molpharmaceut.9b01134

    Article  CAS  PubMed  Google Scholar 

  40. Kopinke D, Brailsford M, Pan FC et al (2012) Ongoing Notch signaling maintains phenotypic fidelity in the adult exocrine pancreas. Dev Biol 362:57–64. https://doi.org/10.1016/j.ydbio.2011.11.010

    Article  CAS  PubMed  Google Scholar 

  41. Hingorani SR, Wang L, Multani AS et al (2005) Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 7:469–483. https://doi.org/10.1016/j.ccr.2005.04.023

    Article  CAS  PubMed  Google Scholar 

  42. Kang R, Xie Y, Zhang Q et al (2017) Intracellular HMGB1 as a novel tumor suppressor of pancreatic cancer. Cell Res 27:916–932. https://doi.org/10.1038/cr.2017.51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Herreros-Villanueva M, Hijona E, Cosme A, Bujanda L (2012) Mouse models of pancreatic cancer. World J Gastroenterol 18:1286–1294. https://doi.org/10.3748/wjg.v18.i12.1286

    Article  PubMed  PubMed Central  Google Scholar 

  44. Martin SP, Ulrich CD 2nd (2000) Pancreatic cancer surveillance in a high-risk cohort Is it worth the cost? Med Clin North Am 84:739–47. https://doi.org/10.1016/s0025-7125(05)70255-8 (xii–xiii)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ms. Kathryn Elizabeth Day and Mr. William Packwood for their assistance in the PET imaging studies.

Funding

This work was supported by the National Institute of Biomedical Imaging and Bioengineering grant (R21-EB020737) and the American Cancer Society Research Scholar (no. ACS-RSG-17–004-01-CCE). Preclinical PET/CT imaging was supported in part by P30CA047904 (UPCI CCSG).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lingyi Sun or Dexing Zeng.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 370 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, L., Gai, Y., Li, Z. et al. Heterodimeric RGD-NGR PET Tracer for the Early Detection of Pancreatic Cancer. Mol Imaging Biol 24, 580–589 (2022). https://doi.org/10.1007/s11307-022-01704-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-022-01704-6

Keywords

Navigation