Skip to main content

Advertisement

Log in

A critical review of radiotracers in the positron emission tomography imaging of traumatic brain injury: FDG, tau, and amyloid imaging in mild traumatic brain injury and chronic traumatic encephalopathy

  • Review Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Positron emission tomography (PET) has been widely utilized in the study of traumatic brain injury (TBI) for decades. While most applications of PET have attempted to assess neuronal function after TBI, more recently, novel radiotracers have sought to image biomarkers in the context of TBI and chronic traumatic encephalopathy (CTE).

Methods

This review will begin with an overview of TBI and CTE along with the acute and chronic pathophysiological consequences of TBI. Next, glycolysis, beta-amyloid, and tau protein radiotracers will be critically assessed in light of the most recent imaging studies available.

Conclusions

Based on the scientific relevance of such radiotracers to the molecular processes of TBI and CTE along with the broader evidence of radiotracer specificity and selectivity, this review will weigh the strengths and weaknesses of each radiotracer. Nonetheless, the evidence indicates that PET will continue to be a powerful modality in the diagnosis of TBI-related conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

[11C]PBB3:

[11C]pyridinyl-butadienyl-benzothiazole 3

[11C]PiB:

2-(4′-[11C]methylaminophenyl)-6-hydroxybenzothiazole

[18F]FDDNP:

2-(1-{6-[(2-[18F]fluoroethyl)(methyl) amino]-2-naphthyl} ethylidene) malononitrile

[18F]FDG:

2-deoxy-2-(18F)fluoro-d-glucose

[18F]Florbetapir:

4-[(E)-2-[6-[2-[2-(2-(18F)fluoranylethoxy)ethoxy]ethoxy]pyridin-3-yl]ethenyl]-N-methylaniline

[18F]Flortaucipir:

7-(6-(18F)fluoranylpyridin-3-yl)-5H-pyrido[4,3-b]indole

[18F]THK-5351:

(2S)-1-(18F)fluoranyl-3-[2-[6-(methylamino)pyridin-3-yl]quinolin-6-yl]oxypropan-2-ol

AD:

Alzheimer’s disease

APOE:

epsilon4 allele-apolipoprotein E genotypes

APP:

amyloid precursor protein

Aβ:

amyloid-β

BACE:

beta-site APP cleaving enzyme

BBB:

blood–brain barrier

CBF:

cerebral blood flow

CSF:

cerebral spine fluid

CTE:

chronic traumatic encephalopathy

DAI:

diffuse axonal injury

DTI:

diffuse tensor imaging

MAO-A:

monoamine oxidase A

MAO-B:

monoamine oxidase B

Moderate TBI:

moderate traumatic brain injury

mTBI:

mild traumatic brain injury

NFT:

neurofibrillary tangles

PCS:

post concussive syndrome

PD:

Parkinson’s disease

PHF:

paired protein filaments

PVC:

partial volume correction

SD:

spreading depression

sTBI:

severe traumatic brain injury

SUV:

standardized uptake values

SUVR:

SUV ratio

TBI:

traumatic brain injury

TDP-43:

TAR DNA-binding protein 43

α-syn:

α-synuclein

References

  1. Kamins J, Giza CC. Concussion—mild traumatic brain injury: recoverable injury with potential for serious sequelae. Neurosurg Clin. 2016;27:441–52.

    Article  Google Scholar 

  2. Meaney DF, Smith DH. Biomechanics of concussion. Clin Sports Med. 2011;30:19–31.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Graham D, Adams JH, Nicoll J, Maxwell W, Gennarelli T. The nature, distribution and causes of traumatic brain injury. Brain Pathol. 1995;5:397–406.

    Article  CAS  PubMed  Google Scholar 

  4. Haider MN, Leddy JJ, Hinds AL, Aronoff N, Rein D, Poulsen D, et al. Intracranial pressure changes after mild traumatic brain injury: a systematic review. Brain Inj. 2018;32:809–15.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Giza CC, DiFiori JP. Pathophysiology of sports-related concussion: an update on basic science and translational research. Sports Health. 2011;3:46–51.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Papa L, Stiell IG, Clement CM, Pawlowicz A, Wolfram A, Braga C, et al. Performance of the Canadian CT Head Rule and the New Orleans Criteria for predicting any traumatic intracranial injury on computed tomography in a United States Level I trauma center. Acad Emerg Med. 2012;19:2–10.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hawryluk GW, Manley GT. Classification of traumatic brain injury: past, present, and future. In:Handbook of clinical neurology: Elsevier; 2015. p. 15–21.

  8. Langlois JA, Rutland-Brown W, Wald MM. The epidemiology and impact of traumatic brain injury: a brief overview. J Head Trauma Rehabil. 2006;21:375–8.

    Article  PubMed  Google Scholar 

  9. Thurman DJ, Branche CM, Sniezek JE. The epidemiology of sports-related traumatic brain injuries in the United States: recent developments. J Head Trauma Rehabil. 1998;13:1–8.

    CAS  PubMed  Google Scholar 

  10. Farace E, Alves WM. Do women fare worse? A metaanalysis of gender differences in outcome after traumatic brain injury. Neurosurg Focus. 2000;8:1–8.

    Article  Google Scholar 

  11. Gandy S, DeKosky ST. [18F]-T807 tauopathy PET imaging in chronic traumatic encephalopathy. F1000Research. 2014;3.

  12. McKee AC, Stein TD, Nowinski CJ, Stern RA, Daneshvar DH, Alvarez VE, et al. The spectrum of disease in chronic traumatic encephalopathy. Brain. 2013;136:43–64.

    Article  PubMed  Google Scholar 

  13. Mez J, Daneshvar DH, Kiernan PT, Abdolmohammadi B, Alvarez VE, Huber BR, et al. Clinicopathological evaluation of chronic traumatic encephalopathy in players of American football. JAMA. 2017;318:360–70.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bailes JE, Petraglia AL, Omalu BI, Nauman E, Talavage T. Role of subconcussion in repetitive mild traumatic brain injury: a review. J Neurosurg. 2013;119:1235–45.

    Article  PubMed  Google Scholar 

  15. Churchill NW, Hutchison MG, Richards D, Leung G, Graham SJ, Schweizer TA. The first week after concussion: blood flow, brain function and white matter microstructure. Neuroimage Clin. 2017;14:480–9.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Giza CC, Hovda DA. The new neurometabolic cascade of concussion. Neurosurgery. 2014;75:S24–33.

    Article  PubMed  Google Scholar 

  17. Ilvesmäki T, Luoto TM, Hakulinen U, Brander A, Ryymin P, Eskola H, et al. Acute mild traumatic brain injury is not associated with white matter change on diffusion tensor imaging. Brain. 2014;137:1876–82.

    Article  PubMed  Google Scholar 

  18. Christman CW, Grady MS, Walker SA, Holloway KL, Povlishock JT. Ultrastructural studies of diffuse axonal injury in humans. J Neurotrauma. 1994;11:173–86.

    Article  CAS  PubMed  Google Scholar 

  19. Lee H, Wintermark M, Gean AD, Ghajar J, Manley GT, Mukherjee P. Focal lesions in acute mild traumatic brain injury and neurocognitive outcome: CT versus 3T MRI. J Neurotrauma. 2008;25:1049–56.

    Article  PubMed  Google Scholar 

  20. Zetterberg H, Smith DH, Blennow K. Biomarkers of mild traumatic brain injury in cerebrospinal fluid and blood. Nat Rev Neurol. 2013;9:201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Creed JA, DiLeonardi AM, Fox DP, Tessler AR, Raghupathi R. Concussive brain trauma in the mouse results in acute cognitive deficits and sustained impairment of axonal function. J Neurotrauma. 2011;28:547–63.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bouley J, Chung DY, Ayata C, Brown RH Jr, Henninger N. Cortical spreading depression denotes concussion injury. J Neurotrauma. 2019;36:1008–17.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Katayama Y, Becker DP, Tamura T, Hovda DA. Massive increases in extracellular potassium and the indiscriminate release of glutamate following concussive brain injury. J Neurosurg. 1990;73:889–900.

    Article  CAS  PubMed  Google Scholar 

  24. Yoshino A, Hovda DA, Kawamata T, Katayama Y, Becker DP. Dynamic changes in local cerebral glucose utilization following cerebral concussion in rats: evidence of a hyper-and subsequent hypometabolic state. Brain Res. 1991;561:106–19.

    Article  CAS  PubMed  Google Scholar 

  25. Narayan RK. Neurotrauma: McGraw-Hill; 1996.

  26. Meier TB, Bellgowan PS, Singh R, Kuplicki R, Polanski DW, Mayer AR. Recovery of cerebral blood flow following sports-related concussion. JAMA Neurol. 2015;72:530–8.

    Article  PubMed  Google Scholar 

  27. Roberts MA, Manshadi F, Bushnell D, Hines M. Neurobehavioural dysfunction following mild traumatic brain injury in childhood: a case report with positive findings on positron emission tomography (PET). Brain Inj. 1995;9:427–36.

    Article  CAS  PubMed  Google Scholar 

  28. McAllister TW, Sparling MB, Flashman LA, Guerin SJ, Mamourian AC, Saykin AJ. Differential working memory load effects after mild traumatic brain injury. Neuroimage. 2001;14:1004–12.

    Article  CAS  PubMed  Google Scholar 

  29. Vagnozzi R, Tavazzi B, Signoretti S, Amorini AM, Belli A, Cimatti M, et al. Temporal window of metabolic brain vulnerability to concussions: mitochondrial-related impairment—part I. Neurosurgery. 2007;61:379–89.

    Article  PubMed  Google Scholar 

  30. Monson KL, Converse MI, Manley GT. Cerebral blood vessel damage in traumatic brain injury. Clin Biomech. 2019;64:98–113.

    Article  Google Scholar 

  31. Shetty AK, Mishra V, Kodali M, Hattiangady B. Blood brain barrier dysfunction and delayed neurological deficits in mild traumatic brain injury induced by blast shock waves. Front Cell Neurosci. 2014;8:232.

    PubMed  PubMed Central  Google Scholar 

  32. Sorby-Adams A, Marcoionni A, Dempsey E, Woenig J, Turner R. The role of neurogenic inflammation in blood-brain barrier disruption and development of cerebral oedema following acute central nervous system (CNS) injury. Int J Mol Sci. 2017;18:1788.

    Article  PubMed Central  CAS  Google Scholar 

  33. Bennett ER, Reuter-Rice K, Laskowitz DT. Genetic influences in traumatic brain injury. Transl Res Traumatic Brain Inj. 2016.

  34. Johnson VE, Weber MT, Xiao R, Cullen DK, Meaney DF, Stewart W, et al. Mechanical disruption of the blood–brain barrier following experimental concussion. Acta Neuropathol. 2018;135:711–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang J, Puvenna V, Janigro D. Biomarkers of traumatic brain injury and their relationship to pathology. Translational research in traumatic brain injury: CRC Press/Taylor and Francis Group; 2016.

  36. Ramlackhansingh AF, Brooks DJ, Greenwood RJ, Bose SK, Turkheimer FE, Kinnunen KM, et al. Inflammation after trauma: microglial activation and traumatic brain injury. Ann Neurol. 2011;70:374–83.

    Article  PubMed  Google Scholar 

  37. Johnson VE, Stewart JE, Begbie FD, Trojanowski JQ, Smith DH, Stewart W. Inflammation and white matter degeneration persist for years after a single traumatic brain injury. Brain. 2013;136:28–42.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Morganti-Kossmann MC, Rancan M, Otto VI, Stahel PF, Kossmann T. Role of cerebral inflammation after traumatic brain injury: a revisited concept. Shock (Augusta, Ga). 2001;16:165–77.

    Article  CAS  Google Scholar 

  39. Ziebell JM, Morganti-Kossmann MC. Involvement of pro-and anti-inflammatory cytokines and chemokines in the pathophysiology of traumatic brain injury. Neurotherapeutics. 2010;7:22–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Woodcock T, Morganti-Kossmann C. The role of markers of inflammation in traumatic brain injury. Front Neurol. 2013;4:18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nakajima Y, Horiuchi Y, Kamata H, Yukawa M, Kuwabara M, Tsubokawa T. Distinct time courses of secondary brain damage in the hippocampus following brain concussion and contusion in rats. Tohoku J Exp Med. 2010;221:229–35.

    Article  PubMed  Google Scholar 

  42. Ryan LM, Warden DL. Post concussion syndrome. Int Rev Psychiatry. 2003;15:310–6.

    Article  PubMed  Google Scholar 

  43. Prins ML, Alexander D, Giza CC, Hovda DA. Repeated mild traumatic brain injury: mechanisms of cerebral vulnerability. J Neurotrauma. 2013;30:30–8.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Laurer HL, Bareyre FM, Lee VM, Trojanowski JQ, Longhi L, Hoover R, et al. Mild head injury increasing the brain's vulnerability to a second concussive impact. J Neurosurg. 2001;95:859–70.

    Article  CAS  PubMed  Google Scholar 

  45. Lifshitz J, Lisembee AM. Neurodegeneration in the somatosensory cortex after experimental diffuse brain injury. Brain Struct Funct. 2012;217:49–61.

    Article  PubMed  Google Scholar 

  46. Huber BR, Meabon JS, Hoffer ZS, Zhang J, Hoekstra JG, Pagulayan KF, et al. Blast exposure causes dynamic microglial/macrophage responses and microdomains of brain microvessel dysfunction. Neuroscience. 2016;319:206–20.

    Article  CAS  PubMed  Google Scholar 

  47. Hay JR, Johnson VE, Young AM, Smith DH, Stewart W. Blood-brain barrier disruption is an early event that may persist for many years after traumatic brain injury in humans. J Neuropathol Exp Neurol. 2015;74:1147–57.

    CAS  PubMed  Google Scholar 

  48. Doherty CP, O’Keefe E, Wallace E, Loftus T, Keaney J, Kealy J, et al. Blood–brain barrier dysfunction as a hallmark pathology in chronic traumatic encephalopathy. J Neuropathol Exp Neurol. 2016;75:656–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Farrell M, Aherne S, O’Riordan S, O’Keeffe E, Greene C, Campbell M. Blood-brain barrier dysfunction in a boxer with chronic traumatic encephalopathy and schizophrenia. Clin Neuropathol. 2019;38:51.

    Article  PubMed  Google Scholar 

  50. Marchi N, Bazarian JJ, Puvenna V, Janigro M, Ghosh C, Zhong J, et al. Consequences of repeated blood-brain barrier disruption in football players. PLoS One. 2013;8:e56805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Blaylock RL, Maroon J. Immunoexcitotoxicity as a central mechanism in chronic traumatic encephalopathy—a unifying hypothesis. Surg Neurol Int. 2011;2.

  52. Vascak M, Sun J, Baer M, Jacobs KM, Povlishock JT. Mild traumatic brain injury evokes pyramidal neuron axon initial segment plasticity and diffuse presynaptic inhibitory terminal loss. Front Cell Neurosci. 2017;11:157.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Aungst SL, Kabadi SV, Thompson SM, Stoica BA, Faden AI. Repeated mild traumatic brain injury causes chronic neuroinflammation, changes in hippocampal synaptic plasticity, and associated cognitive deficits. J Cereb Blood Flow Metab. 2014;34:1223–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. DeFord SM, Wilson MS, Rice AC, Clausen T, Rice LK, Barabnova A, et al. Repeated mild brain injuries result in cognitive impairment in B6C3F1 mice. J Neurotrauma. 2002;19:427–38.

    Article  PubMed  Google Scholar 

  55. Tremblay S, Vernet M, Bashir S, Pascual-Leone A, Théoret H. Theta burst stimulation to characterize changes in brain plasticity following mild traumatic brain injury: a proof-of-principle study. Restor Neurol Neurosci. 2015;33:611–20.

    PubMed  PubMed Central  Google Scholar 

  56. Eisenberg MA, Andrea J, Meehan W, Mannix R. Time interval between concussions and symptom duration. Pediatrics. 2013;132:8–17.

    Article  PubMed  Google Scholar 

  57. Gardner RC, Yaffe K. Epidemiology of mild traumatic brain injury and neurodegenerative disease. Mol Cell Neurosci. 2015;66:75–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ben-Shlomo Y. The epidemiology of Parkinson's disease. Baillieres Clin Neurol. 1997;6:55–68.

    CAS  PubMed  Google Scholar 

  59. Goldman SM, Tanner CM, Oakes D, Bhudhikanok GS, Gupta A, Langston JW. Head injury and Parkinson’s disease risk in twins. Ann Neurol. 2006;60:65–72.

    Article  PubMed  Google Scholar 

  60. Mortimer J, Van Duijn C, Chandra V, Fratiglioni L, Graves A, Heyman A, et al. Head trauma as a risk factor for Alzheimer’s disease: a collaborative re-analysis of case-control studies. Int J Epidemiol. 1991;20:S28–35.

    Article  PubMed  Google Scholar 

  61. Bush AI. The metal theory of Alzheimer’s disease. J Alzheimers Dis. 2013;33:S277–S81.

    Article  PubMed  CAS  Google Scholar 

  62. McCann SM, Mastronardi C, De Laurentiis A, Rettori V. The nitric oxide theory of aging revisited. Ann N Y Acad Sci. 2005;1057:64–84.

    Article  CAS  PubMed  Google Scholar 

  63. Harman D. Free radical theory of aging: Alzheimer’s disease pathogenesis. Age. 1995;18:97–119.

    Article  Google Scholar 

  64. Blum D, Torch S, Lambeng N, Nissou M-F, Benabid A-L, Sadoul R, et al. Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson’s disease. Prog Neurobiol. 2001;65:135–72.

    Article  CAS  PubMed  Google Scholar 

  65. Lin MT, Beal MF. The oxidative damage theory of aging. Clin Neurosci Res. 2003;2:305–15.

    Article  CAS  Google Scholar 

  66. Ahlskog JE, Uitti RJ, Low PA, Tyce GM, Nickander KK, Petersen RC, et al. No evidence for systemic oxidant stress in Parkinson’s or Alzheimer’s disease. Mov Disord Off J Mov Disord Soc. 1995;10:566–73.

    Article  CAS  Google Scholar 

  67. Loring J, Wen X, Lee J, Seilhamer J, Somogyi R. A gene expression profile of Alzheimer’s disease. DNA Cell Biol. 2001;20:683–95.

    Article  CAS  PubMed  Google Scholar 

  68. Mecocci P, MacGarvey U, Beal MF. Oxidative damage to mitochondrial DNA is increased in Alzheimer’s disease. Ann Neurol Off J Am Neurol Assoc Child Neurol Soc. 1994;36:747–51.

    CAS  Google Scholar 

  69. Swerdlow RH, Khan SM. A “mitochondrial cascade hypothesis” for sporadic Alzheimer’s disease. Med Hypotheses. 2004;63:8–20.

    Article  CAS  PubMed  Google Scholar 

  70. Zhang Z-G, Li Y, Ng CT, Song Y-Q. Inflammation in Alzheimer’s disease and molecular genetics: recent update. Arch Immunol Ther Exp. 2015;63:333–44.

    Article  CAS  Google Scholar 

  71. La Joie R, Perrotin A, Barré L, Hommet C, Mézenge F, Ibazizene M, et al. Region-specific hierarchy between atrophy, hypometabolism, and β-amyloid (Aβ) load in Alzheimer's disease dementia. J Neurosci. 2012;32:16265–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. d'Antona R, Baron J, Samson Y, Serdaru M, Viader F, Agid Y, et al. Subcortical dementia: frontal cortex hypometabolism detected by positron tomography in patients with progressive supranuclear palsy. Brain. 1985;108:785–99.

    Article  PubMed  Google Scholar 

  73. Higuchi M, Tashiro M, Arai H, Okamura N, Hara S, Higuchi S, et al. Glucose hypometabolism and neuropathological correlates in brains of dementia with Lewy bodies. Exp Neurol. 2000;162:247–56.

    Article  CAS  PubMed  Google Scholar 

  74. Turner RC, Lucke-Wold B, Robson MJ, Omalu B, Petraglia AL, Bailes JE. Repetitive traumatic brain injury and development of chronic traumatic encephalopathy: a potential role for biomarkers in diagnosis, prognosis, and treatment? Front Neurol. 2013;3:186.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Stefaniak J, O'Brien J. Imaging of neuroinflammation in dementia: a review. J Neurol Neurosurg Psychiatry. 2016;87:21–8.

    Article  PubMed  Google Scholar 

  76. Omalu B. Chronic traumatic encephalopathy. In:Concussion: Karger Publishers; 2014. p. 38–49.

  77. Asken BM, Sullan MJ, DeKosky ST, Jaffee MS, Bauer RM. Research gaps and controversies in chronic traumatic encephalopathy: a review. JAMA Neurol. 2017;74:1255–62.

    Article  PubMed  Google Scholar 

  78. Uryu K, Chen X-H, Martinez D, Browne KD, Johnson VE, Graham DI, et al. Multiple proteins implicated in neurodegenerative diseases accumulate in axons after brain trauma in humans. Exp Neurol. 2007;208:185–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Washington PM, Villapol S, Burns MP. Polypathology and dementia after brain trauma: does brain injury trigger distinct neurodegenerative diseases, or should they be classified together as traumatic encephalopathy? Exp Neurol. 2016;275:381–8.

    Article  PubMed  Google Scholar 

  80. Smith DH, Johnson VE, Trojanowski JQ, Stewart W. Chronic traumatic encephalopathy—confusion and controversies. Nat Rev Neurol. 2019;15:179–83.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Clavaguera F, Grueninger F, Tolnay M. Intercellular transfer of tau aggregates and spreading of tau pathology: implications for therapeutic strategies. Neuropharmacology. 2014;76:9–15.

    Article  CAS  PubMed  Google Scholar 

  82. Wu JW, Hussaini SA, Bastille IM, Rodriguez GA, Mrejeru A, Rilett K, et al. Neuronal activity enhances tau propagation and tau pathology in vivo. Nat Neurosci. 2016;19:1085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Polanco JC, Scicluna BJ, Hill AF, Götz J. Extracellular vesicles isolated from the brains of rTg4510 mice seed tau protein aggregation in a threshold-dependent manner. J Biol Chem. 2016;291:12445–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Katsinelos T, Zeitler M, Dimou E, Karakatsani A, Müller H-M, Nachman E, et al. Unconventional secretion mediates the trans-cellular spreading of tau. Cell Rep. 2018;23:2039–55.

    Article  CAS  PubMed  Google Scholar 

  85. Kfoury N, Holmes BB, Jiang H, Holtzman DM, Diamond MI. Trans-cellular propagation of tau aggregation by fibrillar species. J Biol Chem. 2012;287:19440–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Adams JW, Alvarez VE, Mez J, Huber BR, Tripodis Y, Xia W, et al. Lewy body pathology and chronic traumatic encephalopathy associated with contact sports. J Neuropathol Exp Neurol. 2018;77:757–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Smith DH, Johnson VE, Stewart W. Chronic neuropathologies of single and repetitive TBI: substrates of dementia? Nat Rev Neurol. 2013;9:211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gavett BE, Stern RA, Cantu RC, Nowinski CJ, McKee AC. Mild traumatic brain injury: a risk factor for neurodegeneration. Alzheimers Res Ther. 2010;2:18.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Ward SM, Himmelstein DS, Lancia JK, Binder LI. Tau oligomers and tau toxicity in neurodegenerative disease: Portland Press Limited; 2012.

  90. Mucke L, Selkoe DJ. Neurotoxicity of amyloid β-protein: synaptic and network dysfunction. Cold Spring Harb Perspect Med. 2012;2:a006338.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Shabab T, Khanabdali R, Moghadamtousi SZ, Kadir HA, Mohan G. Neuroinflammation pathways: a general review. Int J Neurosci. 2017;127:624–33.

    Article  CAS  PubMed  Google Scholar 

  92. Jordan BD, Relkin NR, Ravdin LD, Jacobs AR, Bennett A, Gandy S. Apolipoprotein E∈ 4 associated with chronic traumatic brain injury in boxing. Jama. 1997;278:136–40.

    Article  CAS  PubMed  Google Scholar 

  93. Lenihan MW, Jordan BD. The clinical presentation of chronic traumatic encephalopathy. Curr Neurol Neurosci Rep. 2015;15:23.

    Article  PubMed  CAS  Google Scholar 

  94. Zimmer L, Luxen A. PET radiotracers for molecular imaging in the brain: past, present and future. Neuroimage. 2012;61:363–70.

    Article  CAS  PubMed  Google Scholar 

  95. Le Bars D. Fluorine-18 and medical imaging: radiopharmaceuticals for positron emission tomography. J Fluor Chem. 2006;127:1488–93.

    Article  CAS  Google Scholar 

  96. Basu S, Kwee TC, Surti S, Akin EA, Yoo D, Alavi A. Fundamentals of PET and PET/CT imaging. Ann N Y Acad Sci. 2011;1228:1–18.

    Article  CAS  PubMed  Google Scholar 

  97. Mehranian A, Zaidi H. Clinical assessment of emission-and segmentation-based MR-guided attenuation correction in whole-body time-of-flight PET/MR imaging. J Nucl Med. 2015;56:877–83.

    Article  PubMed  Google Scholar 

  98. Weber WA, Ziegler SI, Thodtmann R, Hanauske A-R, Schwaiger M. Reproducibility of metabolic measurements in malignant tumors using FDG PET. J Nucl Med. 1999;40:1771.

    CAS  PubMed  Google Scholar 

  99. Kinahan PE, Fletcher JW. Positron emission tomography-computed tomography standardized uptake values in clinical practice and assessing response to therapy. In:Seminars in Ultrasound, CT and MRI: Elsevier; 2010. p. 496–505.

  100. Huang S-C. Anatomy of SUV. Nucl Med Biol. 2000;27:643–6.

    Article  CAS  PubMed  Google Scholar 

  101. Knešaurek K, Warnock G, Kostakoglu L, Burger C. Comparison of standardized uptake value ratio calculations in amyloid positron emission tomography brain imaging. World J Nucl Med. 2018;17:21.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Golla SS, Wolters EE, Timmers T, Ossenkoppele R, van der Weijden CW, Scheltens P, et al. Parametric methods for [18f] flortaucipir pet. J Cereb Blood Flow Metab. 2020;40:365–73.

    Article  PubMed  Google Scholar 

  103. Timmers T, Ossenkoppele R, Visser D, Tuncel H, Wolters EE, Verfaillie SC, et al. Test–retest repeatability of [18F] Flortaucipir PET in Alzheimer’s disease and cognitively normal individuals. J Cereb Blood Flow Metab. 2019;0271678X19879226.

  104. Alavi A, Reivich M. Guest editorial: the conception of FDG-PET imaging. In:Seminars in nuclear medicine: WB Saunders; 2002. p. 2–5.

  105. Portnow LH, Vaillancourt DE, Okun MS. The history of cerebral PET scanning: from physiology to cutting-edge technology. Neurology. 2013;80:952–6.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Reske SN, Kotzerke J. FDG-PET for clinical use. Eur J Nucl Med. 2001;28:1707–23.

    Article  CAS  PubMed  Google Scholar 

  107. Byrnes KR, Wilson C, Brabazon F, von Leden R, Jurgens J, Oakes TR, et al. FDG-PET imaging in mild traumatic brain injury: a critical review. Front Neuroenerg. 2014;5:13.

    Article  Google Scholar 

  108. Alavi A, Alves W, Fazekas F, Langfitt T, Powe J, Kushner M, et al. Comparison of CT, MRI and PET brain imaging in acute head injury. J Nucl Med. 1988;29:910.

    Google Scholar 

  109. George J, Alavi A, Zimmerman R, Alves W, Reivich M, Gennarelli T. Metabolic (PET) correlates of anatomic lesions (CT/MRI) produced by head trauma. J Nucl Med. 1989;30:802.

    Google Scholar 

  110. Alavi A. Functional and anatomic studies of head injury. J Neuropsychiatry Clin Neurosci. 1989;1:S45–50.

    CAS  PubMed  Google Scholar 

  111. Alves WM, Langfitt TW, Alavi A, Kundel H, Zimmerman RA, Reivich M. Sensitivity and specificity of CT, MRI and PET in head injury. J Cereb Blood Flow Metab. 1987;7:629.

    Google Scholar 

  112. Alavi A, Uzzell BP, Kuhl DE, Zimmerman RA. Radionuclide and computed tomography scans in evaluation of head injury patients. J Nucl Med. 1977;18:614.

    Google Scholar 

  113. Martinez F, Kim CK, Alavi A, Kushner M, Alves W, Rosen M, et al. Cerebellar hypometabolism after head trauma: functional imaging with fluorine-18 FDG PET. J Nucl Med. 1987;28:699.

    Google Scholar 

  114. Fazekas F, Alavi A, Alves W, Rosen M, Zimerman RA, Langitt TW, et al. Assessment of cerebral glucose metabolism in head trauma by positron emission tomography (PET). Neurology. 1978;37:326.

    Google Scholar 

  115. Souder E, A A, Uzzell B, A WM, M R, Gennarelli T. Correlation of fluorodeoxyglucose-PET and neuropsychological findings in head injured patients: preliminary data. J Nucl Med. 1990;31:876.

    Google Scholar 

  116. Alavi A, Langfitt T, Fazekas F, Dunhaime T, Zimmerman R, Reivich M. Correlative studies of head trauma (HT) with PET, MRI and XCT. J Nucl Med. 1986;27:919.

    Google Scholar 

  117. Marklund N, Sihver S, Hovda DA, Långström B, Watanabe Y, Ronquist G, et al. Increased cerebral uptake of [18F] fluoro-deoxyglucose but not [1-14C] glucose early following traumatic brain injury in rats. J Neurotrauma. 2009;26:1281–93.

    Article  PubMed  Google Scholar 

  118. Marklund N, Sihver S, Långström B, Bergström M, Hillered L. Effect of traumatic brain injury and nitrone radical scavengers on relative changes in regional cerebral blood flow and glucose uptake in rats. J Neurotrauma. 2002;19:1139–53.

    Article  PubMed  Google Scholar 

  119. Langfitt TW, Obrist WD, Alavi A, Grossman RI, Zimmerman R, Jaggi J, et al. Computerized tomography, magnetic resonance imaging, and positron emission tomography in the study of brain trauma: preliminary observations. J Neurosurg. 1986;64:760–7.

    Article  CAS  PubMed  Google Scholar 

  120. Abass A, Fazekas T, Alves W. Positron emission tomography in the evaluation of head injury [abstract]. J Cereb Flow Metab. 1987;S646.

  121. Wooten DW, Ortiz-Teran L, Zubcevik N, Zhang X, Huang C, Sepulcre J, et al. Multi-modal signatures of tau pathology, neuronal fiber integrity, and functional connectivity in traumatic brain injury. J Neurotrauma. 2019;36:3233–43.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Hattori N, Huang S-C, Wu H-M, Liao W, Glenn TC, Vespa PM, et al. Acute changes in regional cerebral 18F-FDG kinetics in patients with traumatic brain injury. J Nucl Med. 2004;45:775–83.

    PubMed  Google Scholar 

  123. Ruff RM, Crouch J, Tröster A, Marshall L, Buchsbaum M, Lottenberg S, et al. Selected cases of poor outcome following a minor brain trauma: comparing neuropsychological and positron emission tomography assessment. Brain Inj. 1994;8:297–308.

    Article  CAS  PubMed  Google Scholar 

  124. Fontaine A, Azouvi P, Remy P, Bussel B, Samson Y. Functional anatomy of neuropsychological deficits after severe traumatic brain injury. Neurology. 1999;53:1963.

    Article  CAS  PubMed  Google Scholar 

  125. Divani AA, Phan J-A, Salazar P, SantaCruz KS, Bachour O, Mahmoudi J, et al. Changes in [18F] fluorodeoxyglucose activities in a shockwave-induced traumatic brain injury model using lithotripsy. J Neurotrauma. 2018;35:187–94.

    Article  PubMed  Google Scholar 

  126. Brabazon F, Wilson CM, Shukla DK, Mathur S, Jaiswal S, Bermudez S, et al. [18F] FDG-PET combined with MRI elucidates the pathophysiology of traumatic brain injury in rats. J Neurotrauma. 2017;34:1074–85.

    Article  PubMed  Google Scholar 

  127. Rao N, Turski P, Polcyn R, Nickels R, Matthews C, Flynn M. 18F positron emission computed tomography in closed head injury. Arch Phys Med Rehabil. 1984;65:780–5.

    CAS  PubMed  Google Scholar 

  128. Stout DM, Buchsbaum MS, Spadoni AD, Risbrough VB, Strigo IA, Matthews SC, et al. Multimodal canonical correlation reveals converging neural circuitry across trauma-related disorders of affect and cognition. Neurobiol Stress. 2018;9:241–50.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Zhang J, Mitsis EM, Chu K, Newmark RE, Hazlett EA, Buchsbaum MS. Statistical parametric mapping and cluster counting analysis of [18F] FDG-PET imaging in traumatic brain injury. J Neurotrauma. 2010;27:35–49.

    Article  PubMed  Google Scholar 

  130. Selwyn R, Hockenbury N, Jaiswal S, Mathur S, Armstrong RC, Byrnes KR. Mild traumatic brain injury results in depressed cerebral glucose uptake: an 18FDG PET Study. J Neurotrauma. 2013;30:1943–53.

    Article  PubMed  Google Scholar 

  131. Liu YR, Cardamone L, Hogan RE, Gregoire M-C, Williams JP, Hicks RJ, et al. Progressive metabolic and structural cerebral perturbations after traumatic brain injury: an in vivo imaging study in the rat. J Nucl Med. 2010;51:1788–95.

    Article  PubMed  Google Scholar 

  132. Stocker RP, Cieply MA, Paul B, Khan H, Henry L, Kontos AP, et al. Combat-related blast exposure and traumatic brain injury influence brain glucose metabolism during REM sleep in military veterans. Neuroimage. 2014;99:207–14.

    Article  CAS  PubMed  Google Scholar 

  133. Vaquero J, Zurita M, Bonilla C, Fernández C, Rubio JJ, Mucientes J, et al. Progressive increase in brain glucose metabolism after intrathecal administration of autologous mesenchymal stromal cells in patients with diffuse axonal injury. Cytotherapy. 2017;19:88–94.

    Article  CAS  PubMed  Google Scholar 

  134. Wu H-M, Huang S-C, Hattori N, Glenn TC, Vespa PM, Yu C-L, et al. Selective metabolic reduction in gray matter acutely following human traumatic brain injury. J Neurotrauma. 2004;21:149–61.

    Article  PubMed  Google Scholar 

  135. Bergsneider M, Hovda DA, Shalmon E, Kelly DF, Vespa PM, Martin NA, et al. Cerebral hyperglycolysis following severe traumatic brain injury in humans: a positron emission tomography study. J Neurosurg. 1997;86:241–51.

    Article  CAS  PubMed  Google Scholar 

  136. Yamaki T, Imahori Y, Ohmori Y, Yoshino E, Hohri T, Ebisu T, et al. Cerebral hemodynamics and metabolism of severe diffuse brain injury measured by PET. J Nucl Med. 1996;37:1166–9.

    CAS  PubMed  Google Scholar 

  137. Worley G, Hoffman JM, Paine SS, Kalman SL, Claerhout SJ, Boyko OB, et al. 18-Fluorodeoxyglucose positron emission tomography in children and adolescents with traumatic brain injury. Dev Med Child Neurol. 1995;37:213–20.

    Article  CAS  PubMed  Google Scholar 

  138. Bergsneider M, Hovda DA, Lee SM, Kelly DF, McArthur DL, Vespa PM, et al. Dissociation of cerebral glucose metabolism and level of consciousness during the period of metabolic depression following human traumatic brain injury. J Neurotrauma. 2000;17:389–401.

    Article  CAS  PubMed  Google Scholar 

  139. Selwyn RG, Cooney SJ, Khayrullina G, Hockenbury N, Wilson CM, Jaiswal S, et al. Outcome after repetitive mild traumatic brain injury is temporally related to glucose uptake profile at time of second injury. J Neurotrauma. 2016;33:1479–91.

    Article  PubMed  Google Scholar 

  140. Bang SA, Song YS, Moon BS, Lee BC, Lee H-y, Kim J-M, et al. Neuropsychological, metabolic, and GABAA receptor studies in subjects with repetitive traumatic brain injury. J Neurotrauma. 2016;33:1005–14.

    Article  PubMed  Google Scholar 

  141. Buchsbaum MS, Simmons AN, DeCastro A, Farid N, Matthews SC. Clusters of low 18F-fluorodeoxyglucose uptake voxels in combat veterans with traumatic brain injury and post-traumatic stress disorder. J Neurotrauma. 2015;32:1736–50.

    Article  PubMed  Google Scholar 

  142. Meabon JS, Huber BR, Cross DJ, Richards TL, Minoshima S, Pagulayan KF, et al. Repetitive blast exposure in mice and combat veterans causes persistent cerebellar dysfunction. Sci Transl Med. 2016;8:321ra6–6.

  143. Umile EM, Sandel ME, Alavi A, Terry CM, Plotkin RC. Dynamic imaging in mild traumatic brain injury: support for the theory of medial temporal vulnerability. Arch Phys Med Rehabil. 2002;83:1506–13.

    Article  PubMed  Google Scholar 

  144. Komura A, Kawasaki T, Yamada Y, Uzuyama S, Asano Y, Shinoda J. Cerebral glucose metabolism in patients with chronic mental and cognitive sequelae after a single blunt mild traumatic brain injury without visible brain lesions. J Neurotrauma. 2019;36:641–9.

    Article  PubMed  Google Scholar 

  145. Kato T, Nakayama N, Yasokawa Y, Okumura A, Shinoda J, Iwama T. Statistical image analysis of cerebral glucose metabolism in patients with cognitive impairment following diffuse traumatic brain injury. J Neurotrauma. 2007;24:919–26.

    Article  PubMed  Google Scholar 

  146. Alavi A, Mirot A, Newberg A, Alves W, Gosfield T, Berlin J, et al. Fluorine-18-FDG evaluation of crossed cerebellar diaschisis in head injury. J Nucl Med. 1997;38:1717–20.

    CAS  PubMed  Google Scholar 

  147. Shinoda J, Asano Y. Disorder of executive function of the brain after head injury and mild traumatic brain injury–neuroimaging and diagnostic criteria for implementation of administrative support in Japan. Neurol Med Chir. 2017;57:199–209.

    Article  Google Scholar 

  148. Provenzano FA, Jordan B, Tikofsky RS, Saxena C, Van Heertum RL, Ichise M. F-18 FDG PET imaging of chronic traumatic brain injury in boxers: a statistical parametric analysis. Nucl Med Commun. 2010;31:952–7.

    Article  PubMed  Google Scholar 

  149. Shivamurthy VK, Tahari AK, Marcus C, Subramaniam RM. Brain FDG PET and the diagnosis of dementia. Am J Roentgenol. 2015;204:W76–85.

    Article  Google Scholar 

  150. Moghbel MC, Saboury B, Basu S, Metzler SD, Torigian DA, Långström B, et al. Amyloid-β imaging with PET in Alzheimer’s disease: is it feasible with current radiotracers and technologies? Springer; 2012.

  151. Iqbal K, Liu F, Gong C-X, Grundke-Iqbal I. Tau in Alzheimer disease and related tauopathies. Curr Alzheimer Res. 2010;7:656–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Johnson GV, Stoothoff WH. Tau phosphorylation in neuronal cell function and dysfunction. J Cell Sci. 2004;117:5721–9.

    Article  CAS  PubMed  Google Scholar 

  153. Leuzy A, Chiotis K, Lemoine L, Gillberg P-G, Almkvist O, Rodriguez-Vieitez E, et al. Tau PET imaging in neurodegenerative tauopathies—still a challenge. Mol Psychiatry. 2019;1.

  154. Barrio JR, Small GW, Wong K-P, Huang S-C, Liu J, Merrill DA, et al. In vivo characterization of chronic traumatic encephalopathy using [F-18] FDDNP PET brain imaging. Proc Natl Acad Sci. 2015;112:E2039–E47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Shoghi-Jadid K, Small GW, Agdeppa ED, Kepe V, Ercoli LM, Siddarth P, et al. Localization of neurofibrillary tangles and beta-amyloid plaques in the brains of living patients with Alzheimer disease. Am J Geriatr Psychiatry. 2002;10:24–35.

    Article  PubMed  Google Scholar 

  156. Thompson PW, Ye L, Morgenstern JL, Sue L, Beach TG, Judd DJ, et al. Interaction of the amyloid imaging tracer FDDNP with hallmark Alzheimer’s disease pathologies. J Neurochem. 2009;109:623–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Agdeppa ED, Kepe V, Liu J, Flores-Torres S, Satyamurthy N, Petric A, et al. Binding characteristics of radiofluorinated 6-dialkylamino-2-naphthylethylidene derivatives as positron emission tomography imaging probes for β-amyloid plaques in Alzheimer's disease. J Neurosci. 2001;21:RC189-RC.

    Article  Google Scholar 

  158. Zimmer ER, Leuzy A, Gauthier S, Rosa-Neto P. Developments in tau PET imaging. Can J Neurol Sci. 2014;41:547–53.

    Article  PubMed  Google Scholar 

  159. Harada R, Okamura N, Furumoto S, Tago T, Yanai K, Arai H, et al. Characteristics of tau and its ligands in PET imaging. Biomolecules. 2016;6:7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Lockhart A, Lamb J, Osredkar T, Sue L, Joyce J, Ye L, et al. PIB is a non-specific imaging marker of amyloid-beta (Aβ) peptide-related cerebral amyloidosis. Brain. 2007;130:2607–15.

    Article  CAS  PubMed  Google Scholar 

  161. Choi SR, Schneider JA, Bennett DA, Beach TG, Bedell BJ, Zehntner SP, et al. Correlation of amyloid PET ligand florbetapir F 18 binding with Aβ aggregation and neuritic plaque deposition in postmortem brain tissue. Alzheimer Dis Assoc Disord. 2012;26:8–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Lister-James J, Pontecorvo MJ, Clark C, Joshi AD, Mintun MA, Zhang W, et al. Florbetapir f-18: a histopathologically validated Beta-amyloid positron emission tomography imaging agent. In:Seminars in nuclear medicine: Elsevier; 2011. p. 300–4.

  163. Harada R, Okamura N, Furumoto S, Furukawa K, Ishiki A, Tomita N, et al. 18F-THK5351: a novel PET radiotracer for imaging neurofibrillary pathology in Alzheimer disease. J Nucl Med. 2016;57:208–14.

    Article  CAS  PubMed  Google Scholar 

  164. Ng KP, Pascoal TA, Mathotaarachchi S, Therriault J, Kang MS, Shin M, et al. Monoamine oxidase B inhibitor, selegiline, reduces 18 F-THK5351 uptake in the human brain. Alzheimers Res Ther. 2017;9:25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Huang K-L, Hsu J-L, Lin K-J, Chang C-H, Wu Y-M, Chang T-Y, et al. Visualization of ischemic stroke-related changes on 18 F-THK-5351 positron emission tomography. EJNMMI Res. 2018;8:62.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Baker SL, Harrison TM, Maass A, La Joie R, Jagust WJ. Effect of off-target binding on 18F-flortaucipir variability in healthy controls across the life span. J Nucl Med. 2019;60:1444–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Villemagne VL, Okamura N. In vivo tau imaging: obstacles and progress. Alzheimers Dement. 2014;10:S254–S64.

    PubMed  Google Scholar 

  168. Villemagne VL, Furumoto S, Fodero-Tavoletti M, Harada R, Mulligan RS, Kudo Y, et al. The challenges of tau imaging. Future Neurol. 2012;7:409–21.

    Article  CAS  Google Scholar 

  169. Johnson KA, Schultz A, Betensky RA, Becker JA, Sepulcre J, Rentz D, et al. Tau positron emission tomographic imaging in aging and early a lzheimer disease. Ann Neurol. 2016;79:110–9.

    Article  PubMed  Google Scholar 

  170. Dani M, Brooks D, Edison P. Tau imaging in neurodegenerative diseases. Eur J Nucl Med Mol Imaging. 2016;43:1139–50.

    Article  CAS  PubMed  Google Scholar 

  171. Kantarci K, Lowe VJ, Boeve BF, Senjem ML, Tosakulwong N, Lesnick TG, et al. AV-1451 tau and β-amyloid positron emission tomography imaging in dementia with Lewy bodies. Ann Neurol. 2017;81:58–67.

    Article  CAS  PubMed  Google Scholar 

  172. Wang M-L, Wei X-E, Yu M-M, Li P-Y, Li W-B, Initiative ADN. Self-reported traumatic brain injury and in vivo measure of AD-vulnerable cortical thickness and AD-related biomarkers in the ADNI cohort. Neurosci Lett. 2017;655:115–20.

    Article  CAS  PubMed  Google Scholar 

  173. Mohamed AZ, Cumming P, Srour H, Gunasena T, Uchida A, Haller CN, et al. Amyloid pathology fingerprint differentiates post-traumatic stress disorder and traumatic brain injury. Neuroimage Clin. 2018;19:716–26.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Hong YT, Veenith T, Dewar D, Outtrim JG, Mani V, Williams C, et al. Amyloid imaging with carbon 11–labeled Pittsburgh compound B for traumatic brain injury. JAMA Neurol. 2014;71:23–31.

    Article  PubMed  PubMed Central  Google Scholar 

  175. Scott G, Ramlackhansingh AF, Edison P, Hellyer P, Cole J, Veronese M, et al. Amyloid pathology and axonal injury after brain trauma. Neurology. 2016;86:821–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Kawai N, Kawanishi M, Kudomi N, Maeda Y, Yamamoto Y, Nishiyama Y, et al. Detection of brain amyloid β deposition in patients with neuropsychological impairment after traumatic brain injury: PET evaluation using Pittsburgh compound-B. Brain Inj. 2013;27:1026–31.

    Article  PubMed  Google Scholar 

  177. Ponto LLB, Brashers-Krug TM, Pierson RK, Menda Y, Acion L, Watkins GL, et al. Preliminary investigation of cerebral blood flow and amyloid burden in veterans with and without combat-related traumatic brain injury. J Neuropsychiatry Clin Neurosci. 2015;28:89–96.

    Article  PubMed  Google Scholar 

  178. Takahata K, Kimura Y, Sahara N, Koga S, Shimada H, Ichise M, et al. PET-detectable tau pathology correlates with long-term neuropsychiatric outcomes in patients with traumatic brain injury. Brain. 2019;142:3265–79.

    Article  PubMed  Google Scholar 

  179. Gorgoraptis N, Li LM, Whittington A, Zimmerman KA, Maclean LM, McLeod C, et al. In vivo detection of cerebral tau pathology in long-term survivors of traumatic brain injury. Sci Transl Med. 2019;11:eaaw1993.

    Article  PubMed  CAS  Google Scholar 

  180. Okonkwo DO, Puffer RC, Minhas DS, Beers SR, Edelman KL, Sharpless JM, et al. [18F] FDG,[11C] PiB, and [18F] AV-1451 PET imaging of neurodegeneration in two subjects with a history of repetitive trauma and cognitive decline. Front Neurol. 2019;10:831.

    Article  PubMed  PubMed Central  Google Scholar 

  181. Robinson ME, McKee AC, Salat DH, Rasmusson AM, Radigan LJ, Catana C, et al. Positron emission tomography of tau in Iraq and Afghanistan Veterans with blast neurotrauma. Neuroimage Clin. 2019;21:101651.

    Article  PubMed  PubMed Central  Google Scholar 

  182. Dickstein D, Pullman M, Fernandez C, Short J, Kostakoglu L, Knesaurek K, et al. Cerebral [18 F] T807/AV1451 retention pattern in clinically probable CTE resembles pathognomonic distribution of CTE tauopathy. Transl Psychiatry. 2016;6:e900-e.

    Article  CAS  Google Scholar 

  183. Mitsis E, Riggio S, Kostakoglu L, Dickstein D, Machac J, Delman B, et al. Tauopathy PET and amyloid PET in the diagnosis of chronic traumatic encephalopathies: studies of a retired NFL player and of a man with FTD and a severe head injury. Transl Psychiatry. 2014;4:e441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Stern RA, Adler CH, Chen K, Navitsky M, Luo J, Dodick DW, et al. Tau positron-emission tomography in former National Football League players. N Engl J Med. 2019;380:1716–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Lesman-Segev OH, La Joie R, Stephens ML, Sonni I, Tsai R, Bourakova V, et al. Tau PET and multimodal brain imaging in patients at risk for chronic traumatic encephalopathy. NeuroImage Clin. 2019;24:102025.

    Article  PubMed  PubMed Central  Google Scholar 

  186. Marquié M, Agüero C, Amaral AC, Villarejo-Galende A, Ramanan P, Chong MST, et al. [18 F]-AV-1451 binding profile in chronic traumatic encephalopathy: a postmortem case series. Acta Neuropathol Commun. 2019;7:164.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Mantyh WG, Spina S, Lee A, Iaccarino L, Soleimani-Meigooni D, Tsoy E, et al. Tau positron emission tomographic findings in a former US football player with pathologically confirmed chronic traumatic encephalopathy. JAMA Neurol. 2020.

  188. Sparks P, Lawrence T, Hinze S. Neuroimaging in the diagnosis of chronic traumatic encephalopathy: a systematic review. Clin J Sport Med. 2020;30:S1–S10.

    PubMed  Google Scholar 

  189. Armen RS, DeMarco ML, Alonso DO, Daggett V. Pauling and Corey’s α-pleated sheet structure may define the prefibrillar amyloidogenic intermediate in amyloid disease. Proc Natl Acad Sci. 2004;101:11622–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Kepe V, Moghbel MC, Långström B, Zaidi H, Vinters HV, Huang S-C, et al. Amyloid-β positron emission tomography imaging probes: a critical review. J Alzheimers Dis. 2013;36:613–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abass Alavi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Neurology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayubcha, C., Revheim, ME., Newberg, A. et al. A critical review of radiotracers in the positron emission tomography imaging of traumatic brain injury: FDG, tau, and amyloid imaging in mild traumatic brain injury and chronic traumatic encephalopathy. Eur J Nucl Med Mol Imaging 48, 623–641 (2021). https://doi.org/10.1007/s00259-020-04926-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-020-04926-4

Keywords

Navigation