Skip to main content

Advertisement

Log in

Update of pediatric soft tissue tumors with review of conventional MRI appearance—part 1: tumor-like lesions, adipocytic tumors, fibroblastic and myofibroblastic tumors, and perivascular tumors

  • Review Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

There are numerous soft tissue tumors and tumor-like conditions in the pediatric population. Magnetic resonance imaging is the most useful modality for imaging these lesions. Although certain soft tissue lesions exhibit magnetic resonance features characteristic of a specific diagnosis, most lesions are indeterminate, and a biopsy is necessary for diagnosis. We provide a detailed update of soft tissue tumors and tumor-like conditions that occur in the pediatric population, emphasizing each lesion’s conventional magnetic resonance imaging appearance, using the recently released 5th edition of the World Health Organization Classification of Soft Tissue and Bone Tumors as a guide. In part one of this review, pediatric tumor-like lesions, adipocytic tumors, fibroblastic and myofibroblastic tumors, and perivascular tumors are discussed. In part two, vascular lesions, fibrohistiocytic tumors, muscle tumors, peripheral nerve sheath tumors, tumors of uncertain differentiation, and undifferentiated small round cell sarcomas are reviewed. Per the convention of the WHO, these lesions involve the connective, subcutaneous, and other non-parenchymatous-organ soft tissues, as well as the peripheral and autonomic nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Aflatoon K, Aboulafia AJ, McCarthy EF, Frassica FJ, Levine AM. Pediatric soft-tissue tumors. J Am Acad Orthop Surg. 2003;11:332–43.

    Article  PubMed  Google Scholar 

  2. Ahlawat S, Fayad LM. De novo assessment of pediatric musculoskeletal soft tissue tumors: beyond anatomic imaging. Pediatrics. 2015;136:e194-202.

    Article  PubMed  Google Scholar 

  3. Mahboubi S. Magnetic resonance imaging of soft-tissue tumors in children. Top Magn Reson Imaging TMRI. 2002;13:263–75.

    Article  PubMed  Google Scholar 

  4. Stein-Wexler R. Pediatric soft tissue sarcomas. Semin Ultrasound CT MR. 2011;32:470–88.

    Article  PubMed  Google Scholar 

  5. WHO classification of soft tissue and bone tumours. Fifth Edition.WHO 2020; IARC WHO Classification of Tumours, Vol 3. ISBN-13 978–92–832–4502–5.

  6. Choi JH, Ro JY. The 2020 WHO classification of tumors of soft tissue: selected changes and new entities. Adv Anat Pathol. 2021;28:44–58.

    Article  PubMed  Google Scholar 

  7. Crundwell N, O’Donnell P, Saifuddin A. Non-neoplastic conditions presenting as soft-tissue tumours. Clin Radiol. 2007;62:18–27.

    Article  CAS  PubMed  Google Scholar 

  8. Navarro OM, Laffan EE, Ngan BY. Pediatric soft-tissue tumors and pseudo-tumors: MR imaging features with pathologic correlation: part 1. Imaging approach, pseudotumors, vascular lesions, and adipocytic tumors. Radiogr Rev Publ Radiol Soc N Am Inc. 2009;29:887–906.

    Google Scholar 

  9. Bush CH. The magnetic resonance imaging of musculoskeletal hemorrhage. Skeletal Radiol. 2000;29:1–9.

    Article  CAS  PubMed  Google Scholar 

  10. Hayeri MR, Ziai P, Shehata ML, Teytelboym OM, Huang BK. Soft-tissue infections and their imaging mimics: from cellulitis to necrotizing fasciitis. Radiogr Rev Publ Radiol Soc N Am Inc. 2016;36:1888–910.

    Google Scholar 

  11. Chun CW, Jung J-Y, Baik JS, Jee W-H, Kim SK, Shin SH. Detection of soft-tissue abscess: comparison of diffusion-weighted imaging to contrast-enhanced MRI. J Magn Reson Imaging JMRI. 2018;47:60–8.

    Article  PubMed  Google Scholar 

  12. McGuinness B, Wilson N, Doyle AJ. The “penumbra sign” on T1-weighted MRI for differentiating musculoskeletal infection from tumour. Skeletal Radiol. 2007;36:417–21.

    Article  CAS  PubMed  Google Scholar 

  13. Bermejo A, De Bustamante TD, Martinez A, Carrera R, Zabía E, Manjón P. MR imaging in the evaluation of cystic-appearing soft-tissue masses of the extremities. Radiogr Rev Publ Radiol Soc N Am Inc. 2013;33:833–55.

    Google Scholar 

  14. Sheybani EF, Eutsler EP, Navarro OM. Fat-containing soft-tissue masses in children. Pediatr Radiol. 2016;46:1760–73.

    Article  PubMed  Google Scholar 

  15. Gupta P, Potti TA, Wuertzer SD, Lenchik L, Pacholke DA. Spectrum of fat-containing soft-tissue masses at mr imaging: the common, the uncommon, the characteristic, and the sometimes confusing. Radiogr Rev Publ Radiol Soc N Am Inc. 2016;36:753–66.

    Google Scholar 

  16. Keppler-Noreuil KM, Sapp JC, Lindhurst MJ, Parker VER, Blumhorst C, Darling T, et al. Clinical delineation and natural history of the PIK3CA -related overgrowth spectrum. Am J Med Genet A. 2014;164:1713–33.

    Article  CAS  PubMed Central  Google Scholar 

  17. Kang H-C, Baek ST, Song S, Gleeson JG. Clinical and genetic aspects of the segmental overgrowth spectrum due to somatic mutations in PIK3CA. J Pediatr. 2015;167:957–62.

    Article  PubMed  Google Scholar 

  18. Kalantary S, Van de Casteele E, Nadjmi N. Congenital infiltrating lipomatosis of the face: case report with presentation of a new multistep surgical approach. J Oral Maxillofac Surg Off J Am Assoc Oral Maxillofac Surg. 2018;76:1334–43.

    Article  Google Scholar 

  19. Coffin CM, Lowichik A, Putnam A. Lipoblastoma (LPB): a clinicopathologic and immunohistochemical analysis of 59 cases. Am J Surg Pathol. 2009;33:1705–12.

    Article  PubMed  Google Scholar 

  20. Collins MH, Chatten J. Lipoblastoma/lipoblastomatosis: a clinicopathologic study of 25 tumors. Am J Surg Pathol. 1997;21:1131–7.

    Article  CAS  PubMed  Google Scholar 

  21. Hill S, Rademaker M. A collection of rare anomalies: multiple digital glomuvenous malformations, epidermal naevus, temporal alopecia, heterochromia and abdominal lipoblastoma. Clin Exp Dermatol. 2009;34:e862-864.

    Article  CAS  PubMed  Google Scholar 

  22. Rizer M, Singer AD, Edgar M, Jose J, Subhawong TK. The histological variants of liposarcoma: predictive MRI findings with prognostic implications, management, follow-up, and differential diagnosis. Skeletal Radiol. 2016;45:1193–204.

    Article  PubMed  Google Scholar 

  23. Crago AM, Dickson MA. Liposarcoma: multimodality management and future targeted therapies. Surg Oncol Clin N Am. 2016;25:761–73.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Spillane AJ, Fisher C, Thomas JM. Myxoid liposarcoma–the frequency and the natural history of nonpulmonary soft tissue metastases. Ann Surg Oncol. 1999;6:389–94.

    Article  CAS  PubMed  Google Scholar 

  25. Estourgie SH, Nielsen GP, Ott MJ. Metastatic patterns of extremity myxoid liposarcoma and their outcome. J Surg Oncol. 2002;80:89–93.

    Article  PubMed  Google Scholar 

  26. Sinclair TJ, Thorson CM, Alvarez E, Tan S, Spunt SL, Chao SD. Pleomorphic myxoid liposarcoma in an adolescent with Li-Fraumeni syndrome. Pediatr Surg Int. 2017;33:631–5.

    Article  PubMed  Google Scholar 

  27. Hofvander J, Jo VY, Ghanei I, Gisselsson D, Mårtensson E, Mertens F. Comprehensive genetic analysis of a paediatric pleomorphic myxoid liposarcoma reveals near-haploidization and loss of the RB1 gene. Histopathology. 2016;69:141–7.

    Article  PubMed  Google Scholar 

  28. Creytens D. A contemporary review of myxoid adipocytic tumors. Semin Diagn Pathol. 2019;36:129–41.

    Article  PubMed  Google Scholar 

  29. Anderson WJ, Jo VY. Pleomorphic liposarcoma: updates and current differential diagnosis. Semin Diagn Pathol. 2019;36:122–8.

    Article  PubMed  Google Scholar 

  30. Putra J, Al-Ibraheemi A. Adipocytic tumors in children: a contemporary review. Semin Diagn Pathol. 2019;36:95–104.

    Article  PubMed  Google Scholar 

  31. Demicco EG. Molecular updates in adipocytic neoplasms✰. Semin Diagn Pathol. 2019;36:85–94.

    Article  PubMed  Google Scholar 

  32. Sargar KM, Sheybani EF, Shenoy A, Aranake-Chrisinger J, Khanna G. Pediatric fibroblastic and myofibroblastic tumors: a pictorial review. Radiogr Rev Publ Radiol Soc N Am Inc. 2016;36:1195–214.

    Google Scholar 

  33. Dinauer PA, Brixey CJ, Moncur JT, Fanburg-Smith JC, Murphey MD. Pathologic and MR imaging features of benign fibrous soft-tissue tumors in adults. Radiogr Rev Publ Radiol Soc N Am Inc. 2007;27:173–87.

    Google Scholar 

  34. Jo VY, Fletcher CDM. WHO classification of soft tissue tumours: an update based on the 2013 (4th) edition. Pathology (Phila). 2014;46:95–104.

    CAS  Google Scholar 

  35. Patel NR, Chrisinger JSA, Demicco EG, Sarabia SF, Reuther J, Kumar E, et al. USP6 activation in nodular fasciitis by promoter-swapping gene fusions. Mod Pathol Off J U S Can Acad Pathol Inc. 2017;30:1577–88.

    CAS  Google Scholar 

  36. Salib C, Edelman M, Lilly J, Fantasia JE, Yancoskie AE. USP6 gene rearrangement by FISH analysis in cranial fasciitis: a report of three cases. Head Neck Pathol. 2020;14:257–61.

    Article  PubMed  Google Scholar 

  37. Shimizu S, Hashimoto H, Enjoji M. Nodular fasciitis: an analysis of 250 patients. Pathology (Phila). 1984;16:161–6.

    CAS  Google Scholar 

  38. Lauer DH, Enzinger FM. Cranial fasciitis of childhood. Cancer. 1980;45:401–6.

    Article  CAS  PubMed  Google Scholar 

  39. Patchefsky AS, Enzinger FM. Intravascular fasciitis: a report of 17 cases. Am J Surg Pathol. 1981;5:29–36.

    Article  CAS  PubMed  Google Scholar 

  40. Laffan EE, Ngan B-Y, Navarro OM. Pediatric soft-tissue tumors and pseudotumors: MR imaging features with pathologic correlation: part 2. Tumors of fibroblastic/myofibroblastic, so-called fibrohistiocytic, muscular, lymphomatous, neurogenic, hair matrix, and uncertain origin. Radiogr Rev Publ Radiol Soc N Am Inc. 2009;29:e36.

  41. Coyle J, White LM, Dickson B, Ferguson P, Wunder J, Naraghi A. MRI characteristics of nodular fasciitis of the musculoskeletal system. Skeletal Radiol. 2013;42:975–82.

    Article  CAS  PubMed  Google Scholar 

  42. Choi BW, Won Kim H, Jeon JC, Kang S. Nodular fasciitis mimicking malignant soft tissue tumor in an infant, with 18F-FDG PET/CT findings: a case report. Nukl Nucl Med. 2018;57:N29-31.

    Article  Google Scholar 

  43. Meis JM, Enzinger FM. Proliferative fasciitis and myositis of childhood. Am J Surg Pathol. 1992;16:364–72.

    Article  CAS  PubMed  Google Scholar 

  44. Talbert RJ, Laor T, Yin H. Proliferative myositis: expanding the differential diagnosis of a soft tissue mass in infancy. Skeletal Radiol. 2011;40:1623–7.

    Article  PubMed  Google Scholar 

  45. Subramanian S, Sharma R. Can MR imaging be used to reliably differentiate proliferative myositis from myositis ossificans? Radiology. 2008;246:987–8.

    Article  PubMed  Google Scholar 

  46. Pagonidis K, Raissaki M, Gourtsoyiannis N. Proliferative myositis: value of imaging. J Comput Assist Tomogr. 2005;29:108–11.

    Article  PubMed  Google Scholar 

  47. Choi SS, Myer CM. Proliferative myositis of the mylohyoid muscle. Am J Otolaryngol. 1990;11:198–202.

    Article  CAS  PubMed  Google Scholar 

  48. Mulier S, Stas M, Delabie J, Lateur L, Gysen M, Dal Cin P, et al. Proliferative myositis in a child. Skeletal Radiol. 1999;28:703–9.

    Article  CAS  PubMed  Google Scholar 

  49. Pollock L, Fullilove S, Shaw DG, Malone M, Hill RA. Proliferative myositis in a child. A case report J Bone Joint Surg Am. 1995;77:132–5.

    Article  CAS  PubMed  Google Scholar 

  50. Demir MK, Beser M, Akinci O. Case 118: proliferative myositis. Radiology. 2007;244:613–6.

    Article  PubMed  Google Scholar 

  51. Song W, Suurmeijer AJH, Bollen SM, Cleton-Jansen A-M, Bovée JVMG, Kroon HM. Soft tissue aneurysmal bone cyst: six new cases with imaging details, molecular pathology, and review of the literature. Skeletal Radiol. 2019;48:1059–67.

    Article  PubMed  Google Scholar 

  52. Flores DV, Mejía Gómez C, Estrada-Castrillón M, Smitaman E, Pathria MN. MR imaging of muscle trauma: anatomy, biomechanics, pathophysiology, and imaging appearance. Radiogr Rev Publ Radiol Soc N Am Inc. 2018;38:124–48.

    Google Scholar 

  53. Sukov WR, Franco MF, Erickson-Johnson M, Chou MM, Unni KK, Wenger DE, et al. Frequency of USP6 rearrangements in myositis ossificans, brown tumor, and cherubism: molecular cytogenetic evidence that a subset of “myositis ossificans-like lesions” are the early phases in the formation of soft-tissue aneurysmal bone cyst. Skeletal Radiol. 2008;37:321–7.

    Article  PubMed  Google Scholar 

  54. Švajdler M, Michal M, Martínek P, Ptáková N, Kinkor Z, Szépe P, et al. Fibro-osseous pseudotumor of digits and myositis ossificans show consistent COL1A1-USP6 rearrangement: a clinicopathological and genetic study of 27 cases. Hum Pathol. 2019;88:39–47.

    Article  PubMed  Google Scholar 

  55. Flucke U, Shepard SJ, Bekers EM, Tirabosco R, van Diest PJ, Creytens D, et al. Fibro-osseous pseudotumor of digits - expanding the spectrum of clonal transient neoplasms harboring USP6 rearrangement. Ann Diagn Pathol. 2018;35:53–5.

    Article  PubMed  Google Scholar 

  56. Bekers EM, Eijkelenboom A, Grünberg K, Roverts RC, de Rooy JWJ, van der Geest ICM, et al. Myositis ossificans - another condition with USP6 rearrangement, providing evidence of a relationship with nodular fasciitis and aneurysmal bone cyst. Ann Diagn Pathol. 2018;34:56–9.

    Article  PubMed  Google Scholar 

  57. Jacquot C, Szymanska J, Nemana LJ, Steinbach LS, Horvai AE. Soft-tissue aneurysmal bone cyst with translocation t(17;17)(p13;q21) corresponding to COL1A1 and USP6 loci. Skeletal Radiol. 2015;44:1695–9.

    Article  PubMed  Google Scholar 

  58. Zubler V, Mühlemann M, Sutter R, Götschi T, Müller DA, Dietrich TJ, et al. Diagnostic utility of perilesional muscle edema in myositis ossificans. Skeletal Radiol. 2020;49:929–36.

    Article  PubMed  Google Scholar 

  59. Nielsen GP, Fletcher CDM, Smith MA, Rybak L, Rosenberg AE. Soft tissue aneurysmal bone cyst: a clinicopathologic study of five cases. Am J Surg Pathol. 2002;26:64–9.

    Article  PubMed  Google Scholar 

  60. Rodríguez-Peralto JL, López-Barea F, Sánchez-Herrera S, Atienza M. Primary aneurysmal cyst of soft tissues (extraosseous aneurysmal cyst). Am J Surg Pathol. 1994;18:632–6.

    Article  PubMed  Google Scholar 

  61. Pietschmann MF, Oliveira AM, Chou MM, Ihrler S, Niederhagen M, Baur-Melnyk A, et al. Aneurysmal bone cysts of soft tissue represent true neoplasms: a report of two cases. J Bone Joint Surg Am. 2011;93:e45.

  62. Park JY, Cohen C, Lopez D, Ramos E, Wagenfuehr J, Rakheja D. EGFR exon 20 insertion/duplication mutations characterize fibrous hamartoma of infancy. Am J Surg Pathol. 2016;40:1713–8.

    Article  PubMed  Google Scholar 

  63. Al-Ibraheemi A, Martinez A, Weiss SW, Kozakewich HP, Perez-Atayde AR, Tran H, et al. Fibrous hamartoma of infancy: a clinicopathologic study of 145 cases, including 2 with sarcomatous features. Mod Pathol Off J U S Can Acad Pathol Inc. 2017;30:474–85.

    Google Scholar 

  64. Saab ST, McClain CM, Coffin CM. Fibrous hamartoma of infancy: a clinicopathologic analysis of 60 cases. Am J Surg Pathol. 2014;38:394–401.

    Article  PubMed  Google Scholar 

  65. Han H-J, Lim G-Y, You C-Y. A large infiltrating fibrous hamartoma of infancy in the abdominal wall with rare associated tuberous sclerosis. Pediatr Radiol. 2009;39:743–6.

    Article  PubMed  Google Scholar 

  66. Togo T, Araki E, Ota M, Manabe T, Suzuki S, Utani A. Fibrous hamartoma of infancy in a patient with Williams syndrome. Br J Dermatol. 2007;156:1052–5.

    Article  CAS  PubMed  Google Scholar 

  67. Ji Y, Hu P, Zhang C, Yan Q, Cheng H, Han M, et al. Fibrous hamartoma of infancy: radiologic features and literature review. BMC Musculoskelet Disord. 2019;20:356.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Stensby JD, Conces MR, Nacey NC. Benign fibrous hamartoma of infancy: a case of MR imaging paralleling histologic findings. Skeletal Radiol. 2014;43:1639–43.

    Article  CAS  PubMed  Google Scholar 

  69. Cheng JC, Wong MW, Tang SP, Chen TM, Shum SL, Wong EM. Clinical determinants of the outcome of manual stretching in the treatment of congenital muscular torticollis in infants. A prospective study of eight hundred and twenty-one cases. J Bone Joint Surg Am. 2001;83:679–87.

    Article  CAS  PubMed  Google Scholar 

  70. Porter SB, Blount BW. Pseudotumor of infancy and congenital muscular torticollis. Am Fam Physician. 1995;52:1731–6.

    CAS  PubMed  Google Scholar 

  71. Cheng JC, Au AW. Infantile torticollis: a review of 624 cases. J Pediatr Orthop. 1994;14:802–8.

    Article  CAS  PubMed  Google Scholar 

  72. Cheng JC, Tang SP, Chen TM. Sternocleidomastoid pseudotumor and congenital muscular torticollis in infants: a prospective study of 510 cases. J Pediatr. 1999;134:712–6.

    Article  CAS  PubMed  Google Scholar 

  73. Bedi DG, John SD, Swischuk LE. Fibromatosis colli of infancy: variability of sonographic appearance. J Clin Ultrasound JCU. 1998;26:345–8.

    Article  CAS  PubMed  Google Scholar 

  74. Kumar B, Pradhan A. Diagnosis of sternomastoid tumor of infancy by fine-needle aspiration cytology. Diagn Cytopathol. 2011;39:13–7.

    Article  PubMed  Google Scholar 

  75. Davids JR, Wenger DR, Mubarak SJ. Congenital muscular torticollis: sequela of intrauterine or perinatal compartment syndrome. J Pediatr Orthop. 1993;13:141–7.

    CAS  PubMed  Google Scholar 

  76. Casas-Alba D, Martínez-Monseny A, Pino-Ramírez RM, Alsina L, Castejón E, Navarro-Vilarrubí S, et al. Hyaline fibromatosis syndrome: clinical update and phenotype-genotype correlations. Hum Mutat. 2018;39:1752–63.

    Article  CAS  PubMed  Google Scholar 

  77. Denadai R, Raposo-Amaral CE, Bertola D, Kim C, Alonso N, Hart T, et al. Identification of 2 novel ANTXR2 mutations in patients with hyaline fibromatosis syndrome and proposal of a modified grading system. Am J Med Genet A. 2012;158A:732–42.

    Article  PubMed  Google Scholar 

  78. Nofal A, Sanad M, Assaf M, Nofal E, Nassar A, Almokadem S, et al. Juvenile hyaline fibromatosis and infantile systemic hyalinosis: a unifying term and a proposed grading system. J Am Acad Dermatol. 2009;61:695–700.

    Article  PubMed  Google Scholar 

  79. Youssefian L, Vahidnezhad H, Touati A, Ziaee V, Saeidian AH, Pajouhanfar S, et al. The genetic basis of hyaline fibromatosis syndrome in patients from a consanguineous background: a case series. BMC Med Genet. 2018;19:87.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Bürgi J, Kunz B, Abrami L, Deuquet J, Piersigilli A, Scholl-Bürgi S, et al. CMG2/ANTXR2 regulates extracellular collagen VI which accumulates in hyaline fibromatosis syndrome. Nat Commun. 2017;8:15861.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Castiglione D, Terranova MC, Picone D, Lo Re G, Salerno S. Hyaline fibromatosis syndrome (juvenile hyaline fibromatosis): whole-body MR findings in two siblings with different subcutaneous nodules distribution. Skeletal Radiol. 2018;47:425–31.

    Article  PubMed  Google Scholar 

  82. Van Raak SM, Meuffels DE, Van Leenders GJLH, Oei EHG. Hyaline fibromatosis of Hoffa’s fat pad in a patient with a mild type of hyaline fibromatosis syndrome. Skeletal Radiol. 2014;43:531–4.

    Article  PubMed  Google Scholar 

  83. Härter B, Benedicenti F, Karall D, Lausch E, Schweigmann G, Stanzial F, et al. Clinical aspects of Hyaline Fibromatosis Syndrome and identification of a novel mutation. Mol Genet Genomic Med. 2020;8:e1203.

  84. Ishii E, Hayashida Y, Torii Y, Irie K, Ogawa T, Noguchi S, et al. Diffuse fibromatosis on the scalp in infancy: a variant of juvenile hyaline fibromatosis. Acta Paediatr Jpn Overseas Ed. 1997;39:466–71.

    Article  CAS  Google Scholar 

  85. Jabra AA, Taylor GA. MRI evaluation of superficial soft tissue lesions in children. Pediatr Radiol. 1993;23:425–8.

    Article  CAS  PubMed  Google Scholar 

  86. Chung EB. Pitfalls in diagnosing benign soft tissue tumors in infancy and childhood. Pathol Annu. 1985;20(Pt 2):323–86.

    PubMed  Google Scholar 

  87. Beckett JH, Jacobs AH. Recurring digital fibrous tumors of childhood: a review. Pediatrics. 1977;59:401–6.

    Article  CAS  PubMed  Google Scholar 

  88. Ryman W, Bale P. Recurring digital fibromas of infancy. Australas J Dermatol. 1985;26:113–7.

    Article  CAS  PubMed  Google Scholar 

  89. Laskin WB, Miettinen M, Fetsch JF. Infantile digital fibroma/fibromatosis: a clinicopathologic and immunohistochemical study of 69 tumors from 57 patients with long-term follow-up. Am J Surg Pathol. 2009;33:1–13.

    Article  PubMed  Google Scholar 

  90. Murphey MD, Ruble CM, Tyszko SM, Zbojniewicz AM, Potter BK, Miettinen M. Musculoskeletal fibromatoses: radiologic-pathologic correlation. Radiographics. 2009;29:2143–83.

    Article  PubMed  Google Scholar 

  91. Marks E, Ewart M. Infantile digital fibroma: a rare fibromatosis. Arch Pathol Lab Med. 2016;140:1153–6.

    Article  PubMed  Google Scholar 

  92. Eypper EH, Lee JC, Tarasen AJ, Weinberg MH, Adetayo OA. An algorithmic approach to the management of infantile digital fibromatosis: review of literature and a case report. Eplasty. 2018;18:e19.

  93. Niamba P, Léauté-Labrèze C, Boralevi F, Lepreux S, Chamaillard M, Vergnes P, et al. Further documentation of spontaneous regression of infantile digital fibromatosis. Pediatr Dermatol. 2007;24:280–4.

    Article  PubMed  Google Scholar 

  94. Puls F, Hofvander J, Magnusson L, Nilsson J, Haywood E, Sumathi VP, et al. FN1-EGF gene fusions are recurrent in calcifying aponeurotic fibroma. J Pathol. 2016;238:502–7.

    Article  CAS  PubMed  Google Scholar 

  95. Allen PW, Enzinger FM. Juvenile aponeurotic fibroma. Cancer. 1970;26:857–67.

    Article  CAS  PubMed  Google Scholar 

  96. Fetsch JF, Miettinen M. Calcifying aponeurotic fibroma: a clinicopathologic study of 22 cases arising in uncommon sites. Hum Pathol. 1998;29:1504–10.

    Article  CAS  PubMed  Google Scholar 

  97. Shim SW, Kang BS, Lee C-C, Suh JH, Shim HS. MRI features of calcifying aponeurotic fibroma in the upper arm: a case report and review of the literature. Skeletal Radiol. 2016;45:1139–43.

    Article  PubMed  Google Scholar 

  98. Coffin CM, Hornick JL, Zhou H, Fletcher CDM. Gardner fibroma: a clinicopathologic and immunohistochemical analysis of 45 patients with 57 fibromas. Am J Surg Pathol. 2007;31:410–6.

    Article  PubMed  Google Scholar 

  99. Wehrli BM, Weiss SW, Yandow S, Coffin CM. Gardner-associated fibromas (GAF) in young patients: a distinct fibrous lesion that identifies unsuspected Gardner syndrome and risk for fibromatosis. Am J Surg Pathol. 2001;25:645–51.

    Article  CAS  PubMed  Google Scholar 

  100. Kasper B, Baumgarten C, Garcia J, Bonvalot S, Haas R, Haller F, et al. An update on the management of sporadic desmoid-type fibromatosis: a European Consensus Initiative between Sarcoma PAtients EuroNet (SPAEN) and European Organization for Research and Treatment of Cancer (EORTC)/Soft Tissue and Bone Sarcoma Group (STBSG). Ann Oncol Off J Eur Soc Med Oncol. 2017;28:2399–408.

    Article  CAS  Google Scholar 

  101. Nieuwenhuis MH, Casparie M, Mathus-Vliegen LMH, Dekkers OM, Hogendoorn PCW, Vasen HFA. A nation-wide study comparing sporadic and familial adenomatous polyposis-related desmoid-type fibromatoses. Int J Cancer. 2011;129:256–61.

    Article  CAS  PubMed  Google Scholar 

  102. Mankin HJ, Hornicek FJ, Springfield DS. Extra-abdominal desmoid tumors: a report of 234 cases. J Surg Oncol. 2010;102:380–4.

    Article  PubMed  Google Scholar 

  103. Sheth PJ, Del Moral S, Wilky BA, Trent JC, Cohen J, Rosenberg AE, et al. Desmoid fibromatosis: MRI features of response to systemic therapy. Skeletal Radiol. 2016;45:1365–73.

    Article  PubMed  Google Scholar 

  104. Crombé A, Kind M, Ray-Coquard I, Isambert N, Chevreau C, André T, et al. Progressive desmoid tumor: radiomics compared with conventional response criteria for predicting progression during systemic therapy-a multicenter study by the French Sarcoma Group. AJR Am J Roentgenol. 2020;215:1539–48.

    Article  PubMed  Google Scholar 

  105. Ingley KM, Burtenshaw SM, Theobalds NC, White LM, Blackstein ME, Gladdy RA, et al. Clinical benefit of methotrexate plus vinorelbine chemotherapy for desmoid fibromatosis (DF) and correlation of treatment response with MRI. Cancer Med. 2019;8:5047–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Gounder MM, Lefkowitz RA, Keohan ML, D’Adamo DR, Hameed M, Antonescu CR, et al. Activity of Sorafenib against desmoid tumor/deep fibromatosis. Clin Cancer Res Off J Am Assoc Cancer Res. 2011;17:4082–90.

    Article  CAS  Google Scholar 

  107. Agresta L, Kim H, Turpin BK, Nagarajan R, Plemmons A, Szabo S, et al. Pazopanib therapy for desmoid tumors in adolescent and young adult patients. Pediatr Blood Cancer. 2018;65:e26968.

  108. Elnekave E, Atar E, Amar S, Bruckheimer E, Knizhnik M, Yaniv I, et al. Doxorubicin-eluting intra-arterial therapy for pediatric extra-abdominal desmoid fibromatoses: a promising approach for a perplexing disease. J Vasc Interv Radiol JVIR. 2018;29:1376–82.

    Article  PubMed  Google Scholar 

  109. Risoud M, Mortuaire G, Leroy X, Leblond P, Fayoux P. Desmoid tumours of the head and neck in children: review of management. Eur Ann Otorhinolaryngol Head Neck Dis. 2017;134:155–60.

    Article  CAS  PubMed  Google Scholar 

  110. Fetsch JF, Miettinen M, Laskin WB, Michal M, Enzinger FM. A clinicopathologic study of 45 pediatric soft tissue tumors with an admixture of adipose tissue and fibroblastic elements, and a proposal for classification as lipofibromatosis. Am J Surg Pathol. 2000;24:1491–500.

    Article  CAS  PubMed  Google Scholar 

  111. Al-Ibraheemi A, Folpe AL, Perez-Atayde AR, Perry K, Hofvander J, Arbajian E, et al. Aberrant receptor tyrosine kinase signaling in lipofibromatosis: a clinicopathological and molecular genetic study of 20 cases. Mod Pathol Off J U S Can Acad Pathol Inc. 2019;32:423–34.

    CAS  Google Scholar 

  112. Vogel D, Righi A, Kreshak J, Dei Tos AP, Merlino B, Brunocilla E, et al. Lipofibromatosis: magnetic resonance imaging features and pathological correlation in three cases. Skeletal Radiol. 2014;43:633–9.

    Article  PubMed  Google Scholar 

  113. Simon MP, Pedeutour F, Sirvent N, Grosgeorge J, Minoletti F, Coindre JM, et al. Deregulation of the platelet-derived growth factor B-chain gene via fusion with collagen gene COL1A1 in dermatofibrosarcoma protuberans and giant-cell fibroblastoma. Nat Genet. 1997;15:95–8.

    Article  CAS  PubMed  Google Scholar 

  114. Jha P, Moosavi C, Fanburg-Smith JC. Giant cell fibroblastoma: an update and addition of 86 new cases from the Armed Forces Institute of Pathology, in honor of Dr. Franz M Enzinger Ann Diagn Pathol. 2007;11:81–8.

    Article  Google Scholar 

  115. Sanchez J. Giant cell fibroblastoma. Am J Dermatopathol. 2006;28:228.

    Article  Google Scholar 

  116. Min S, Park S-Y, Seo J, Koh SH, Lee K. Ultrasound and MRI findings of giant cell fibroblastoma in the abdominal wall: radiologic-pathologic correlations. J Korean Soc Radiol. 2020;81:237.

    Article  Google Scholar 

  117. Terrier-Lacombe MJ, Guillou L, Maire G, Terrier P, Vince DR, de Saint Aubain Somerhausen N, et al. Dermatofibrosarcoma protuberans, giant cell fibroblastoma, and hybrid lesions in children: clinicopathologic comparative analysis of 28 cases with molecular data--a study from the French Federation of Cancer Centers Sarcoma Group. Am J Surg Pathol. 2003;27:27–39.

    Article  PubMed  Google Scholar 

  118. Iqbal CW, St Peter S, Ishitani MB. Pediatric dermatofibrosarcoma protuberans: multi-institutional outcomes. J Surg Res. 2011;170:69–72.

    Article  PubMed  Google Scholar 

  119. Kesserwan C, Sokolic R, Cowen EW, Garabedian E, Heselmeyer-Haddad K, Lee CCR, et al. Multicentric dermatofibrosarcoma protuberans in patients with adenosine deaminase-deficient severe combined immune deficiency. J Allergy Clin Immunol. 2012;129:762-769.e1.

    Article  CAS  PubMed  Google Scholar 

  120. Kransdorf MJ, Meis-Kindblom JM. Dermatofibrosarcoma protuberans: radiologic appearance. AJR Am J Roentgenol. 1994;163:391–4.

    Article  CAS  PubMed  Google Scholar 

  121. Torreggiani WC, Al-Ismail K, Munk PL, Nicolaou S, O’Connell JX, Knowling MA. Dermatofibrosarcoma protuberans: MR imaging features. AJR Am J Roentgenol. 2002;178:989–93.

    Article  PubMed  Google Scholar 

  122. Goldblum JR, Reith JD, Weiss SW. Sarcomas arising in dermatofibrosarcoma protuberans: a reappraisal of biologic behavior in eighteen cases treated by wide local excision with extended clinical follow up. Am J Surg Pathol. 2000;24:1125–30.

    Article  CAS  PubMed  Google Scholar 

  123. Mendenhall WM, Zlotecki RA, Scarborough MT. Dermatofibrosarcoma protuberans. Cancer. 2004;101:2503–8.

    Article  PubMed  Google Scholar 

  124. Harati K, Lange K, Goertz O, Lahmer A, Kapalschinski N, Stricker I, et al. A single-institutional review of 68 patients with dermatofibrosarcoma protuberans: wide re-excision after inadequate previous surgery results in a high rate of local control. World J Surg Oncol. 2017;15:5.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Voth H, Landsberg J, Hinz T, Wenzel J, Bieber T, Reinhard G, et al. Management of dermatofibrosarcoma protuberans with fibrosarcomatous transformation: an evidence-based review of the literature. J Eur Acad Dermatol Venereol JEADV. 2011;25:1385–91.

    Article  CAS  PubMed  Google Scholar 

  126. Coffin CM, Hornick JL, Fletcher CDM. Inflammatory myofibroblastic tumor: comparison of clinicopathologic, histologic, and immunohistochemical features including ALK expression in atypical and aggressive cases. Am J Surg Pathol. 2007;31:509–20.

    Article  PubMed  Google Scholar 

  127. Coffin CM, Watterson J, Priest JR, Dehner LP. Extrapulmonary inflammatory myofibroblastic tumor (inflammatory pseudotumor). A clinicopathologic and immunohistochemical study of 84 cases. Am J Surg Pathol. 1995;19:859–72.

    Article  CAS  PubMed  Google Scholar 

  128. Gleason BC, Hornick JL. Inflammatory myofibroblastic tumours: where are we now? J Clin Pathol. 2008;61:428–37.

    Article  CAS  PubMed  Google Scholar 

  129. Chun YS, Wang L, Nascimento AG, Moir CR, Rodeberg DA. Pediatric inflammatory myofibroblastic tumor: anaplastic lymphoma kinase (ALK) expression and prognosis. Pediatr Blood Cancer. 2005;45:796–801.

    Article  PubMed  Google Scholar 

  130. Tang TT, Segura AD, Oechler HW, Harb JM, Adair SE, Gregg DC, et al. Inflammatory myofibrohistiocytic proliferation simulating sarcoma in children. Cancer. 1990;65:1626–34.

    Article  CAS  PubMed  Google Scholar 

  131. Oguz B, Ozcan HN, Omay B, Ozgen B, Haliloglu M. Imaging of childhood inflammatory myofibroblastic tumor. Pediatr Radiol. 2015;45:1672–81.

    Article  PubMed  Google Scholar 

  132. Lai LM, McCarville MB, Kirby P, Kao SCS, Moritani T, Clark E, et al. Shedding light on inflammatory pseudotumor in children: spotlight on inflammatory myofibroblastic tumor. Pediatr Radiol. 2015;45:1738–52.

    Article  PubMed  Google Scholar 

  133. Cheng K-J, Wang S-Q, Zhou S-H. A case report of an inflammatory myofibroblastic tumor of the neck: a focus on the computed tomography and magnetic resonance imaging findings. Oncol Lett. 2015;10:518–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Alaggio R, Cecchetto G, Bisogno G, Gambini C, Calabrò ML, Inserra A, et al. Inflammatory myofibroblastic tumors in childhood: a report from the Italian Cooperative Group studies. Cancer. 2010;116:216–26.

    PubMed  Google Scholar 

  135. Schöffski P, Sufliarsky J, Gelderblom H, Blay JY, Strauss SJ, Stacchiotti S, et al. Crizotinib in patients with advanced, inoperable inflammatory myofibroblastic tumours with and without anaplastic lymphoma kinase gene alterations (European Organisation for Research and Treatment of Cancer 90101 CREATE): a multicentre, single-drug, prospective, non-randomised phase 2 trial. Lancet Respir Med. 2018;6:431–41.

    Article  PubMed  Google Scholar 

  136. Davis JL, Lockwood CM, Stohr B, Boecking C, Al-Ibraheemi A, DuBois SG, et al. Expanding the spectrum of pediatric NTRK-rearranged mesenchymal tumors. Am J Surg Pathol. 2019;43:435–45.

    Article  PubMed  Google Scholar 

  137. Kao Y-C, Fletcher CDM, Alaggio R, Wexler L, Zhang L, Sung Y-S, et al. Recurrent BRAF gene fusions in a subset of pediatric spindle cell sarcomas: expanding the genetic spectrum of tumors with overlapping features with infantile fibrosarcoma. Am J Surg Pathol. 2018;42:28–38.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Wegert J, Vokuhl C, Collord G, Del Castillo V-H, Farndon SJ, Guzzo C, et al. Recurrent intragenic rearrangements of EGFR and BRAF in soft tissue tumors of infants. Nat Commun. 2018;9:2378.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Flucke U, van Noesel MM, Wijnen M, Zhang L, Chen C-L, Sung Y-S, et al. TFG-MET fusion in an infantile spindle cell sarcoma with neural features. Genes Chromosomes Cancer. 2017;56:663–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Orbach D, Rey A, Cecchetto G, Oberlin O, Casanova M, Thebaud E, et al. Infantile fibrosarcoma: management based on the European experience. J Clin Oncol Off J Am Soc Clin Oncol. 2010;28:318–23.

    Article  Google Scholar 

  141. Chung EB, Enzinger FM. Infantile fibrosarcoma. Cancer. 1976;38:729–39.

    Article  CAS  PubMed  Google Scholar 

  142. Coffin CM, Jaszcz W, O’Shea PA, Dehner LP. So-called congenital-infantile fibrosarcoma: does it exist and what is it? Pediatr Pathol. 1994;14:133–50.

    Article  CAS  PubMed  Google Scholar 

  143. Adibe OO, Juang D, Valusek PA, Holcomb GW, Snyder CL. Infantile fibrosarcoma: 2 case reports and literature review. Eur J Pediatr Surg Off J Austrian Assoc Pediatr Surg Al Z Kinderchir. 2011;21:200–2.

    CAS  Google Scholar 

  144. Stein-Wexler R. MR imaging of soft tissue masses in children. Magn Reson Imaging Clin N Am. 2009;17(489–507):vi.

    Google Scholar 

  145. Laetsch TW, DuBois SG, Mascarenhas L, Turpin B, Federman N, Albert CM, et al. Larotrectinib for paediatric solid tumours harbouring NTRK gene fusions: phase 1 results from a multicentre, open-label, phase 1/2 study. Lancet Oncol. 2018;19:705–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. DuBois SG, Laetsch TW, Federman N, Turpin BK, Albert CM, Nagasubramanian R, et al. The use of neoadjuvant larotrectinib in the management of children with locally advanced TRK fusion sarcomas. Cancer. 2018;124:4241–7.

    Article  CAS  PubMed  Google Scholar 

  147. Mertens F, Fletcher CDM, Antonescu CR, Coindre J-M, Colecchia M, Domanski HA, et al. Clinicopathologic and molecular genetic characterization of low-grade fibromyxoid sarcoma, and cloning of a novel FUS/CREB3L1 fusion gene. Lab Investig J Tech Methods Pathol. 2005;85:408–15.

    Article  CAS  Google Scholar 

  148. Möller E, Hornick JL, Magnusson L, Veerla S, Domanski HA, Mertens F. FUS-CREB3L2/L1-positive sarcomas show a specific gene expression profile with upregulation of CD24 and FOXL1. Clin Cancer Res Off J Am Assoc Cancer Res. 2011;17:2646–56.

    Article  Google Scholar 

  149. Billings SD, Giblen G, Fanburg-Smith JC. Superficial low-grade fibromyxoid sarcoma (Evans tumor): a clinicopathologic analysis of 19 cases with a unique observation in the pediatric population. Am J Surg Pathol. 2005;29:204–10.

    Article  PubMed  Google Scholar 

  150. Evans HL. Low-grade fibromyxoid sarcoma: a clinicopathologic study of 33 cases with long-term follow-up. Am J Surg Pathol. 2011;35:1450–62.

    Article  PubMed  Google Scholar 

  151. Ud Din N, Ahmad Z, Zreik R, Horvai A, Folpe AL, Fritchie K. Abdominopelvic and retroperitoneal low-grade fibromyxoid sarcoma: a clinicopathologic study of 13 cases. Am J Clin Pathol. 2018;149:128–34.

    Article  PubMed  Google Scholar 

  152. Jakowski JD, Wakely PE. Primary intrathoracic low-grade fibromyxoid sarcoma. Hum Pathol. 2008;39:623–8.

    Article  PubMed  Google Scholar 

  153. Kim SK, Jee W-H, Lee AW, Chung YG. Haemorrhagic low-grade fibromyxoid sarcoma: MR findings in two young women. Br J Radiol. 2011;84:e146–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Sargar K, Kao SC, Spunt SL, Hawkins DS, Parham DM, Coffin C, et al. MRI and CT of low-grade fibromyxoid sarcoma in children: a report from Children’s Oncology Group Study ARST0332. Am J Roentgenol. 2015;205:414–20.

    Article  Google Scholar 

  155. Hwang S, Kelliher E, Hameed M. Imaging features of low-grade fibromyxoid sarcoma (Evans tumor). Skeletal Radiol. 2012;41:1263–72.

    Article  PubMed  Google Scholar 

  156. Miyake M, Tateishi U, Maeda T, Arai Y, Seki K, Hasegawa T, et al. CT and MRI features of low-grade fibromyxoid sarcoma in the shoulder of a pediatric patient. Radiat Med. 2006;24:511–4.

    Article  PubMed  Google Scholar 

  157. Hung YP, Fletcher CDM. Myopericytomatosis: clinicopathologic analysis of 11 cases with molecular identification of recurrent PDGFRB alterations in myopericytomatosis and myopericytoma. Am J Surg Pathol. 2017;41:1034–44.

    Article  PubMed  Google Scholar 

  158. Agaimy A, Bieg M, Michal M, Geddert H, Märkl B, Seitz J, et al. Recurrent somatic PDGFRB mutations in sporadic infantile/solitary adult myofibromas but not in angioleiomyomas and myopericytomas. Am J Surg Pathol. 2017;41:195–203.

    Article  PubMed  Google Scholar 

  159. Mentzel T, Dei Tos AP, Sapi Z, Kutzner H. Myopericytoma of skin and soft tissues: clinicopathologic and immunohistochemical study of 54 cases. Am J Surg Pathol. 2006;30:104–13.

    Article  PubMed  Google Scholar 

  160. Cheung YH, Gayden T, Campeau PM, LeDuc CA, Russo D, Nguyen V-H, et al. A recurrent PDGFRB mutation causes familial infantile myofibromatosis. Am J Hum Genet. 2013;92:996–1000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Naffaa L, Khalifeh I, Salman R, Itani M, Saab R, Al-Kutoubi A. Infantile myofibromatosis: review of imaging findings and emphasis on correlation between MRI and histopathological findings. Clin Imaging. 2019;54:40–7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack Porrino.

Ethics declarations

Conflict of interest

Author Andrew Haims, MD, discloses a financial relationship with Pfizer.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Porrino, J., Al-Dasuqi, K., Irshaid, L. et al. Update of pediatric soft tissue tumors with review of conventional MRI appearance—part 1: tumor-like lesions, adipocytic tumors, fibroblastic and myofibroblastic tumors, and perivascular tumors. Skeletal Radiol 51, 477–504 (2022). https://doi.org/10.1007/s00256-021-03836-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-021-03836-2

Keywords

Navigation