Skip to main content

Advertisement

Log in

Radiologic evaluation of fracture healing

  • Review Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

While assessment of fracture healing is a common task for both orthopedic surgeons and radiologists, it remains challenging due to a lack of consensus on imaging and clinical criteria as well as the lack of a true gold standard. Further complicating this evaluation are the wide variations between patients, specific fracture sites, and fracture patterns. Research into the mechanical properties of bone and the process of bone healing has helped to guide the evaluation of fracture union. Development of standardized scoring systems and identification of specific radiologic signs have further clarified the radiologist’s role in this process. This article reviews these scoring systems and signs with regard to the biomechanical basis of fracture healing. We present the utility and limitations of current techniques used to assess fracture union as well as newer methods and potential future directions for this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Vortkamp A, Pathi S, Peretti GM, Caruso EM, Zaleske DJ, Tabin CJ. Recapitulation of signals regulating embryonic bone formation during postnatal growth and in fracture repair. Mech Dev. 1998;71(1–2):65–76.

    Article  CAS  Google Scholar 

  2. Ferguson C, Alpern E, Miclau T, Helms JA. Does adult fracture repair recapitulate embryonic skeletal formation? Mech Dev. 1999;87(1–2):57–66.

    Article  CAS  Google Scholar 

  3. Bruder SP, Fink DJ, Caplan AI. Mesenchymal stem cells in bone development, bone repair, and skeletal regeneration therapy. J Cell Biochem. 1994;56(3):283–94.

    Article  CAS  Google Scholar 

  4. Karsenty G, Wagner EF. Reaching a genetic and molecular understanding of skeletal development. Dev Cell. 2002;2(4):389–406.

    Article  CAS  Google Scholar 

  5. Provot S, Schipani E. Molecular mechanisms of endochondral bone development. Biochem Biophys Res Commun. 2005;328(3):658–65.

    Article  CAS  Google Scholar 

  6. Du X, Xie Y, Xian CJ, Chen L. Role of FGFs/FGFRs in skeletal development and bone regeneration. J Cell Physiol. 2012;227(12):3731–43.

    Article  CAS  Google Scholar 

  7. Phillips AM. Overview of the fracture healing cascade. Injury. 2005;36(Suppl 3):S5–7.

    Article  Google Scholar 

  8. Lee TC, Staines A, Taylor D. Bone adaptation to load: microdamage as a stimulus for bone remodelling. J Anat. 2002;201(6):437–46.

    Article  CAS  Google Scholar 

  9. Einhorn TA. The cell and molecular biology of fracture healing. Clin Orthop Relat Res. 1998(355 Suppl):S7–21.

  10. Einhorn TA, Gerstenfeld LC. Fracture healing: mechanisms and interventions. Nat Rev Rheumatol. 2015;11(1):45–54.

    Article  Google Scholar 

  11. Watanabe Y, Nishizawa Y, Takenaka N, Kobayashi M, Matsushita T. Ability and limitation of radiographic assessment of fracture healing in rats. Clin Orthop Relat Res. 2009;467(8):1981–5.

    Article  Google Scholar 

  12. Marsh D. Concepts of fracture union, delayed union, and nonunion. Clin Orthop Relat Res. 1998;355(Suppl):S22–30.

    Article  Google Scholar 

  13. Mills L, Tsang J, Hopper G, Keenan G, Simpson AH. The multifactorial aetiology of fracture nonunion and the importance of searching for latent infection. Bone Joint Res. 2016;5(10):512–9.

    Article  CAS  Google Scholar 

  14. Morshed S, Corrales L, Genant H, Miclau T. Outcome assessment in clinical trials of fracture-healing. J Bone Joint Surg Am. 2008;90(Suppl 1):62–7.

    Article  Google Scholar 

  15. Morshed S. Current options for determining fracture union. Adv Med. 2014;2014:708574.

    Article  Google Scholar 

  16. Calori GM, Albisetti W, Agus A, Iori S, Tagliabue L. Risk factors contributing to fracture non-unions. Injury. 2007;38(2):S11–8.

    Article  Google Scholar 

  17. Donovan A, Schweitzer ME, editors. Imaging musculoskeletal trauma: interpretation and reporting. Chichester, West Sussex: Wiley-Blackwell; 2012.

    Google Scholar 

  18. Dijkman BG, Sprague S, Schemitsch EH, Bhandari M. When is a fracture healed? Radiographic and clinical criteria revisited. J Orthop Trauma. 2010;24(Suppl 1):S76–80.

    Article  Google Scholar 

  19. Beaton DE, Schemitsch E. Measures of health-related quality of life and physical function. Clin Orthop Relat Res. 2003;413:90–105.

    Article  Google Scholar 

  20. Axelrad TW, Einhorn TA. Use of clinical assessment tools in the evaluation of fracture healing. Injury. 2011;42(3):301–5.

    Article  Google Scholar 

  21. Bhandari M, Guyatt GH, Swiontkowski MF, Tornetta P, Sprague S, Schemitsch EH. A lack of consensus in the assessment of fracture healing among orthopaedic surgeons. J Orthop Trauma. 2002;16(8):562–6.

    Article  Google Scholar 

  22. Corrales LA, Morshed S, Bhandari M, Miclau T. Variability in the assessment of fracture-healing in orthopaedic trauma studies. J Bone Joint Surg Am. 2008;90(9):1862–8.

    Article  Google Scholar 

  23. Dijkman BG, Busse JW, Walter SD, Bhandari M, Investigators T. The impact of clinical data on the evaluation of tibial fracture healing. Trials. 2011;12:237.

    Article  Google Scholar 

  24. Webb J, Herling G, Gardner T, Kenwright J, Simpson AH. Manual assessment of fracture stiffness. Injury. 1996;27(5):319–20.

    Article  CAS  Google Scholar 

  25. Hammer R, Norrbom H. Evaluation of fracture stability. A mechanical simulator for assessment of clinical judgement. Acta Orthop Scand. 1984;55(3):330–3.

    Article  CAS  Google Scholar 

  26. Leow JM, Clement ND, Tawonsawatruk T, Simpson CJ, Simpson AH. The radiographic union scale in tibial (RUST) fractures: reliability of the outcome measure at an independent centre. Bone Joint Res. 2016;5(4):116–21.

    Article  CAS  Google Scholar 

  27. Bohl DD, Lese AB, Patterson JT, Grauer JN, Dodds SD. Routine imaging after operatively repaired distal radius and scaphoid fractures: a survey of hand surgeons. J Wrist Surg. 2014;3(4):239–44.

    Article  Google Scholar 

  28. Eastaugh-Waring SJ, Joslin CC, Hardy JR, Cunningham JL. Quantification of fracture healing from radiographs using the maximum callus index. Clin Orthop Relat Res. 2009;467(8):1986–91.

    Article  CAS  Google Scholar 

  29. Panjabi MM, Walter SD, Karuda M, White AA, Lawson JP. Correlations of radiographic analysis of healing fractures with strength: a statistical analysis of experimental osteotomies. J Orthop Res. 1985;3(2):212–8.

    Article  CAS  Google Scholar 

  30. Sano H, Uhthoff HK, Backman DS, Yeadon A. Correlation of radiographic measurements with biomechanical test results. Clin Orthop Relat Res. 1999;368:271–8.

    Article  Google Scholar 

  31. Hammer RR, Hammerby S, Lindholm B. Accuracy of radiologic assessment of tibial shaft fracture union in humans. Clin Orthop Relat Res. 1985;199:233–8.

    Google Scholar 

  32. Kooistra BW, Dijkman BG, Busse JW, Sprague S, Schemitsch EH, Bhandari M. The radiographic union scale in tibial fractures: reliability and validity. J Orthop Trauma. 2010;24(Suppl 1):S81–6.

    Article  Google Scholar 

  33. Whelan DB, Bhandari M, McKee MD, Guyatt GH, Kreder HJ, Stephen D, et al. Interobserver and intraobserver variation in the assessment of the healing of tibial fractures after intramedullary fixation. J Bone Joint Surg (Br). 2002;84(1):15–8.

    Article  CAS  Google Scholar 

  34. Whelan DB, Bhandari M, Stephen D, Kreder H, McKee MD, Zdero R, et al. Development of the radiographic union score for tibial fractures for the assessment of tibial fracture healing after intramedullary fixation. J Trauma. 2010;68(3):629–32.

    Article  Google Scholar 

  35. Tawonsawatruk T, Hamilton DF, Simpson AH. Validation of the use of radiographic fracture-healing scores in a small animal model. J Orthop Res. 2014;32(9):1117–9.

    Article  Google Scholar 

  36. Bhandari M, Chiavaras M, Ayeni O, Chakraverrty R, Parasu N, Choudur H, et al. Assessment of radiographic fracture healing in patients with operatively treated femoral neck fractures. J Orthop Trauma. 2013;27(9):e213–9.

    Article  Google Scholar 

  37. Bhandari M, Chiavaras MM, Parasu N, Choudur H, Ayeni O, Chakravertty R, et al. Radiographic union score for hip substantially improves agreement between surgeons and radiologists. BMC Musculoskelet Disord. 2013;14:70.

    Article  Google Scholar 

  38. Chiavaras MM, Bains S, Choudur H, Parasu N, Jacobson J, Ayeni O, et al. The radiographic union score for hip (RUSH): the use of a checklist to evaluate hip fracture healing improves agreement between radiologists and orthopedic surgeons. Skelet Radiol. 2013;42(8):1079–88.

    Article  Google Scholar 

  39. Frank T, Osterhoff G, Sprague S, Garibaldi A, Bhandari M, Slobogean GP, et al. The radiographic union score for hip (RUSH) identifies radiographic nonunion of femoral neck fractures. Clin Orthop Relat Res. 2016;474(6):1396–404.

    Article  Google Scholar 

  40. Patel SP, Anthony SG, Zurakowski D, Didolkar MM, Kim PS, Wu JS, et al. Radiographic scoring system to evaluate union of distal radius fractures. J Hand Surg [Am]. 2014;39(8):1471–9.

    Article  Google Scholar 

  41. Salih S, Blakey C, Chan D, McGregor-Riley JC, Royston SL, Gowlett S, et al. The callus fracture sign: a radiological predictor of progression to hypertrophic non-union in diaphyseal tibial fractures. Strategies Trauma Limb Reconstr. 2015;10(3):149–53.

    Article  CAS  Google Scholar 

  42. Lujan TJ, Madey SM, Fitzpatrick DC, Byrd GD, Sanderson JM. Bottlang M. A computational technique to measure fracture callus in radiographs. J Biomech. 2010;43(4):792–5.

    Article  Google Scholar 

  43. Yee AJ, Bae HW, Friess D, Robbin M, Johnstone B, Yoo JU. Accuracy and interobserver agreement for determinations of rabbit posterolateral spinal fusion. Spine (Phila Pa 1976). 2004;29(12):1308–13.

    Article  Google Scholar 

  44. Markel MD, Morin RL, Wikenheiser MA, Lewallen DG, Chao EY. Quantitative CT for the evaluation of bone healing. Calcif Tissue Int. 1991;49(6):427–32.

    Article  CAS  Google Scholar 

  45. Grigoryan M, Lynch JA, Fierlinger AL, Guermazi A, Fan B, MacLean DB, et al. Quantitative and qualitative assessment of closed fracture healing using computed tomography and conventional radiography. Acad Radiol. 2003;10(11):1267–73.

    Article  Google Scholar 

  46. Krestan CR, Noske H, Vasilevska V, Weber M, Schueller G, Imhof H, et al. MDCT versus digital radiography in the evaluation of bone healing in orthopedic patients. AJR Am J Roentgenol. 2006;186(6):1754–60.

    Article  Google Scholar 

  47. Kuhlman JE, Fishman EK, Magid D, Scott WW, Brooker AF, Siegelman SS. Fracture nonunion: CT assessment with multiplanar reconstruction. Radiology. 1988;167(2):483–8.

    Article  CAS  Google Scholar 

  48. Bhattacharyya T, Bouchard KA, Phadke A, Meigs JB, Kassarjian A, Salamipour H. The accuracy of computed tomography for the diagnosis of tibial nonunion. J Bone Joint Surg Am. 2006;88(4):692–7.

    PubMed  Google Scholar 

  49. Braunstein EM, Goldstein SA, Ku J, Smith P, Matthews LS. Computed tomography and plain radiography in experimental fracture healing. Skelet Radiol. 1986;15(1):27–31.

    Article  CAS  Google Scholar 

  50. Firoozabadi R, Morshed S, Engelke K, Prevrhal S, Fierlinger A, Miclau T, et al. Qualitative and quantitative assessment of bone fragility and fracture healing using conventional radiography and advanced imaging technologies--focus on wrist fracture. J Orthop Trauma. 2008;22(8 Suppl):S83–90.

    Article  Google Scholar 

  51. den Boer FC, Bramer JA, Patka P, Bakker FC, Barentsen RH, Feilzer AJ, et al. Quantification of fracture healing with three-dimensional computed tomography. Arch Orthop Trauma Surg. 1998;117(6–7):345–50.

    Article  Google Scholar 

  52. Sigurdsen U, Reikeras O, Hoiseth A, Utvag SE. Correlations between strength and quantitative computed tomography measurement of callus mineralization in experimental tibial fractures. Clin Biomech (Bristol, Avon). 2011;26(1):95–100.

    Article  Google Scholar 

  53. Lynch JA, Grigoryan M, Fierlinger A, Guermazi A, Zaim S, MacLean DB, et al. Measurement of changes in trabecular bone at fracture sites using X-ray CT and automated image registration and processing. J Orthop Res. 2004;22(2):362–7.

    Article  Google Scholar 

  54. Mallinson PI, Coupal TM, McLaughlin PD, Nicolaou S, Munk PL, Ouellette HA. Dual-energy CT for the musculoskeletal system. Radiology. 2016;281(3):690–707.

    Article  Google Scholar 

  55. Augat P, Morgan EF, Lujan TJ, MacGillivray TJ, Cheung WH. Imaging techniques for the assessment of fracture repair. Injury. 2014;45(Suppl 2):S16–22.

    Article  Google Scholar 

  56. Moed BR, Subramanian S, van Holsbeeck M, Watson JT, Cramer KE, Karges DE, et al. Ultrasound for the early diagnosis of tibial fracture healing after static interlocked nailing without reaming: clinical results. J Orthop Trauma. 1998;12(3):206–13.

    Article  CAS  Google Scholar 

  57. Moed BR, Watson JT, Goldschmidt P, van Holsbeeck M. Ultrasound for the early diagnosis of fracture healing after interlocking nailing of the tibia without reaming. Clin Orthop Relat Res. 1995;310:137–44.

    Google Scholar 

  58. Wawrzyk M, Sokal J, Andrzejewska E, Przewratil P. The role of ultrasound imaging of callus formation in the treatment of long bone fractures in children. Pol J Radiol. 2015;80:473–8.

    Article  Google Scholar 

  59. Risselada M, Kramer M, Saunders JH, Verleyen P, Van Bree H. Power Doppler assessment of the neovascularization during uncomplicated fracture healing of long bones in dogs and cats. Vet Radiol Ultrasound. 2006;47(3):301–6.

    Article  Google Scholar 

  60. Rawool NM, Goldberg BB, Forsberg F, Winder AA, Hume E. Power Doppler assessment of vascular changes during fracture treatment with low-intensity ultrasound. J Ultrasound Med. 2003;22(2):145–53.

    Article  Google Scholar 

  61. Niikura T, Lee SY, Sakai Y, Nishida K, Kuroda R, Kurosaka M. Comparison of radiographic appearance and bone scintigraphy in fracture nonunions. Orthopedics. 2014;37(1):e44–50.

    Article  Google Scholar 

  62. Piert M, Zittel TT, Becker GA, Jahn M, Stahlschmidt A, Maier G, et al. Assessment of porcine bone metabolism by dynamic. J Nucl Med. 2001;42(7):1091–100.

    CAS  PubMed  Google Scholar 

  63. Messa C, Goodman WG, Hoh CK, Choi Y, Nissenson AR, Salusky IB, et al. Bone metabolic activity measured with positron emission tomography and [18F]fluoride ion in renal osteodystrophy: correlation with bone histomorphometry. J Clin Endocrinol Metab. 1993;77(4):949–55.

    CAS  PubMed  Google Scholar 

  64. Narita N, Kato K, Nakagaki H, Ohno N, Kameyama Y, Weatherell JA. Distribution of fluoride concentration in the rat's bone. Calcif Tissue Int. 1990;46(3):200–4.

    Article  CAS  Google Scholar 

  65. Hsu WK, Feeley BT, Krenek L, Stout DB, Chatziioannou AF, Lieberman JR. The use of 18F-fluoride and 18F-FDG PET scans to assess fracture healing in a rat femur model. Eur J Nucl Med Mol Imaging. 2007;34(8):1291–301.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger J. Bartolotta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fisher, J.S., Kazam, J.J., Fufa, D. et al. Radiologic evaluation of fracture healing. Skeletal Radiol 48, 349–361 (2019). https://doi.org/10.1007/s00256-018-3051-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-018-3051-0

Keywords

Navigation