Skip to main content
Log in

Quantitative CT for the evaluation of bone healing

  • Orthopedic Surgical Forum
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Summary

Quantitative computed tomography (QCT) was used to quantitate the structural strength and local material properties of healing tibial osteotomies in 32 dogs. Dogs were divided into four equal groups, euthanatized at either 2, 4, 8, or 12 weeks and imaged with QCT. Invasive techniques were used to determine (1) the torsional properties of the bone; (2) the local stiffness properties and calcium content within the bone; and (3) histologically determined new bone formation and porosity. QCT was strongly associated with the maximum torque (R2=0.44) and torsional stiffness (R2=0.69) of the healing bone. QCT had strong correlations with the local stiffness (R2=0.64), calcium content (R2=0.61), new bone (R2=0.84), and porosity (R2=0.84) of healing tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mazess RB (1983) Noninvasive bone measurements. In: Kunin A (ed) Skeletal research II. Academic Press, New York, p 277

    Google Scholar 

  2. Aro HT, Wahner HW, Kelly PJ, Chao EYS (1989) Comparison of stable transverse and unstable oblique osteotomy healing in the canine tibia under external fixation. Trans Orthop Res Soc 14:121

    Google Scholar 

  3. McBroom RJ, Hayes WC, Edwards WT, Goldberg RP, White AA (1985) Prediction of vertebral body compressive fracture using quantitative computed tomography. J Bone Joint Surg 67-A:1206–1214

    Google Scholar 

  4. Cann CE (1988) Quantitative CT for determination of bone mineral density: a review. Radiology 166:509–522

    PubMed  CAS  Google Scholar 

  5. Eriksson SAV, Isberg BO, Lindgren JU (1989) Prediction of vertebral strength by dual photon absorptiometry and quantitative computed tomography. Calcif Tissue Int 44:243–250

    PubMed  CAS  Google Scholar 

  6. Ruegsegger P, Niederer P, Anliker M (1974) An extension of classical bone mineral measurements. Ann Biomed Eng 2:194–205

    Article  Google Scholar 

  7. Reich NE, Seidelmann FE, Tubbs RR (1976) Determination of bone mineral content using CT scanning. AJR 127:593–594

    PubMed  CAS  Google Scholar 

  8. Isherwood I, Rutherford RA, Pullan BR, Adams PH (1976) Bone mineral estimation by computer-assisted transverse axial tomography. Lancet 1:712–715

    Article  Google Scholar 

  9. Posner I, Griffiths HJ (1979) Comparison of CT scanning with photon absorptiometric measurement of bone mineral content in the appendicular skeletal. Invest Radiol 12:542–544

    Google Scholar 

  10. Genant HK, Boyd DP (1977) Quantitative bone mineral analysis using dual-energy computed tomography. Invest Radiol 12:545–551

    Article  PubMed  CAS  Google Scholar 

  11. Revak DS (1980) Mineral content of cortical bone measured by computed tomography. J Comput Assist Tomogr 4:342–350

    Article  PubMed  CAS  Google Scholar 

  12. Alho A, Husby T, Høseth A (1988) Bone mineral content and mechanical strength. Clin Orthop 227:292–297

    PubMed  CAS  Google Scholar 

  13. Rand JA, An KN, Chao EYS, Kelly PJ (1981) A comparison of the effect of open intramedullary nailing and compression-plate fixation on fracture-site blood flow and fracture union. J Bone Joint Surg 63-A:428–442

    Google Scholar 

  14. Harris WH, Lavorgna J, Hamblen DL, Haywood EA (1968) The inhibition of ossification in vivo. Clin Orthop 61:52–60

    PubMed  CAS  Google Scholar 

  15. Cann CE, Genant HK, Kolb FO, Ettinger B (1985) Quantitative computed tomography for prediction of vertebral fracture risk Metab Bone Dis Rel Res 6:1–7

    CAS  Google Scholar 

  16. Genant HK, Cann CE, Ettinger B, Gordon GS, Kolb FO, Reiser U, Arnaud CD (1985) Quantitative computed tomography for spinal mineral assessment: current status. J Comput Assist Tomogr 9:602–604

    Article  PubMed  CAS  Google Scholar 

  17. Sartoris DJ, Andre M, Resnick C, Resnick D (1986) Trabecular bone density in the proximal femur: quantitative CT assessment. Radiology 160:707–712

    PubMed  CAS  Google Scholar 

  18. Falkenberg J (1961) An experimental study of the rate of fracture healing. Acta Orthop Scand (Suppl 50)

  19. Burstein AH, Frankel VH (1971) A standard test for laboratory animal bone. Technical note. J Biomech 4:155–158

    Article  PubMed  CAS  Google Scholar 

  20. Sammarco GJ, Burstein AH, Davis WL, Frankel VH (1971) The biomechanics of torsional fractures: the effect of loading on ultimate properties. J Biomech 4:113–117

    Article  PubMed  CAS  Google Scholar 

  21. Aitken GK, Bourne RB, Finlay JB, Rorabeck CH, Andreae PR (1985) Indentation stiffness of the cancellous bone in the distal human tibia. Clin Orthop 201:264–270

    PubMed  Google Scholar 

  22. Johnson JA, Krug WH, Nahon D, Miller JE, Ahmed AM (1983) An evaluation of the load-bearing capability of the cancellous proximal tibia with special interest in the design of knee implants. Trans Orthop Res Soc 8:403

    Google Scholar 

  23. Josefchak RG, Finlay JB, Bourne RB, Rorabeck CH (1987) Cancellous bone support for patellar resurfacing. Clin Orthop 220:192–199

    Google Scholar 

  24. Aro HT, Wippermann BW, Hodgson SF, Wahner HW, Lewallen DG, Chao EY (1989) Prediction of properties of fracture callus by measurement of mineral density using micro-bone densitometry. J Bone Joint Surg 71A:1020–1030

    Google Scholar 

  25. Markel MD, Wikenheiser MA, Chao EYS (1990) A study of fracture callus material properties: relation to the torsional strength of bone. J Orthop Res 8:843–850

    Article  PubMed  CAS  Google Scholar 

  26. Nixon DE, Moyer TP, Johnson P, McCall JT, Ness AB, Fjerstad WH, Wehde MB (1986) Routine measurement of calcium, magnesium, copper, zinc, and iron in urine and serum by inductively coupled plasma emission spectroscopy. Clin Chem 32:1660–1665

    PubMed  CAS  Google Scholar 

  27. Baron R, Vignery A, Neff L, Silverglate A, Maria AS (1979) Processing of undecalcified bone specimens for bone histomorphometry. In: Recker RR (ed) Bone histomorphometry techniques and interpretation. CRC Press, Boca Raton, p 13

    Google Scholar 

  28. Jowsey J, Kelly PJ, Riggs BL, Bianco AJ, Scholz DA, Gershon-Cohen JG (1965) Quantitative microradiographic studies of normal and osteoporotic bone. J Bone Joint Surg 47A:785–806

    Google Scholar 

  29. Lewallen DG, Aro HT, Chao EYS, Berquist TH, Kelly PJ (1988) Noninvasive evaluation of bone healing using quantitative MRI imaging. Trans Orthop Res Soc 13:409

    Google Scholar 

  30. Frost HM (1979) Bone histomorphometry: choice of marking agent and labeling schedule. In: Recker RR (ed) Bone histomorphometry techniques and interpretation. CRC Press, Boca Raton, p 38

    Google Scholar 

  31. Cruess RL, Dumont J (1975) Fracture healing. Can J Surg 18:403–413

    PubMed  CAS  Google Scholar 

  32. Sevitt S (1980) Healing of fractures in man. In: Owen R, Goodfellow J, Bullough P (eds) Scientific foundations of orthopedics and traumatology. WB Saunders, Philadelphia, p 258

    Google Scholar 

  33. Hulth A (1989) Current concepts of fracture healing. Clin Orthop 249:265–284

    PubMed  Google Scholar 

  34. Morgan CL (1983) Introduction to tomography and principles of computed tomography. In: Basic principles of computed tomography. University Park Press, Baltimore, p 1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markel, M.D., Morin, R.L., Wikenheiser, M.A. et al. Quantitative CT for the evaluation of bone healing. Calcif Tissue Int 49, 427–432 (1991). https://doi.org/10.1007/BF02555855

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02555855

Key words

Navigation