Skip to main content

Advertisement

Log in

Effect of sarcopenia on clinical and surgical outcome in elderly patients with proximal femur fractures

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Purpose

To investigate the relationship between sarcopenia with short-term surgical outcome in elderly patients with proximal femur fractures.

Methods and materials

Following Institutional Review Board approval, a database of patients receiving a pelvis CT scan for acute trauma between January 2000–August 2016 was screened for an isolated proximal femur fracture. Patients were excluded if they were: < 50 years old, had conditions predisposing to sarcopenia (renal failure, congestive heart failure, muscular dystrophies), had undergone no surgical treatment, had other major traumatic injuries, or had a pathologic femur fracture. The paraspinal muscle density (PSD) at the L4 level was measured in Hounsfield units. The skeletal muscle index (SMI) was measured as the total skeletal muscle area at L4 divided by patient height.2 PSD and SMI were tested for association with surgical outcome measures: length of hospital stay, perioperative mortality, medical complications, in-hospital blood transfusion volume, and 90-day readmission rate, using multiple variable regression analysis. Pearson correlation of PSD and SMI was performed.

Results

Controlling for age, gender, body mass index (BMI), and fracture type, low PSD and SMI were both independently associated with longer length of hospitalization (p = 0.008 and p = 0.032, respectively). Low PSD was associated with a higher amount of blood transfusion volume during the perioperative period (p = 0.004). Pearson correlation revealed moderate positive correlation between the SMI and PSD (r = 0.579, p < 0.001).

Conclusion

In proximal femur fractures, elderly patients with sarcopenia are more likely to have prolonged hospitalization following surgery and require more blood transfusion volume during the perioperative period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Miyamoto RG, Kaplan KM, Levine BR, Egol KA, Zuckerman JD. Surgical management of hip fractures: an evidence-based review of the literature. I: femoral neck fractures. J Am Acad Orthopaedic Surg. 2008;16(10):596–607.

    Article  Google Scholar 

  2. Brauer CA, Coca-Perraillon M, Cutler DM, Rosen AB. Incidence and mortality of hip fractures in the United States. JAMA. 2009;302(14):1573–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cenzer IS, Tang V, Boscardin WJ, Smith AK, Ritchie C, Wallhagen MI, et al. One-year mortality after hip fracture: development and validation of a prognostic index. Journal of the American Geriatrics Society. 2016.

  4. Barefield E. Costs of falls among older adults. National Center for Injury Prevention and Control, Division of Unintentional Injury Prevention. 2008.

  5. Bentler SE, Liu L, Obrizan M, Cook EA, Wright KB, Geweke JF, et al. The aftermath of hip fracture: discharge placement, functional status change, and mortality. Am J Epidemiol. 2009;170(10):1290–9.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Svensson O, Stromberg L, Ohlen G, Lindgren U. Prediction of the outcome after hip fracture in elderly patients. J Bone Joint Surg Br. 1996;78(1):115–8.

    Article  CAS  PubMed  Google Scholar 

  7. Prieto-Alhambra D, Premaor MO, Aviles FF, Castro AS, Javaid MK, Nogues X, et al. Relationship between mortality and BMI after fracture: a population-based study of men and women aged >/=40 years. J Bone Miner Res. 2014;29(8):1737–44.

    Article  PubMed  Google Scholar 

  8. Sayer AA, Syddall H, Martin H, Patel H, Baylis D, Cooper C. The developmental origins of sarcopenia. J Nutr Health Aging. 2008;12(7):427–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Boutin RD, Yao L, Canter RJ, Lenchik L. Sarcopenia: current concepts and imaging implications. AJR Am J Roentgenol. 2015;205(3):W255–66.

    Article  PubMed  Google Scholar 

  10. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, et al. Sarcopenia: European consensus on definition and diagnosis: report of the European working group on sarcopenia in older people. Age Ageing. 2010;39(4):412–23.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Delmonico MJ, Harris TB, Lee JS, Visser M, Nevitt M, Kritchevsky SB, et al. Alternative definitions of sarcopenia, lower extremity performance, and functional impairment with aging in older men and women. J Am Geriatr Soc. 2007;55(5):769–74.

    Article  PubMed  Google Scholar 

  12. Goodpaster BH, Park SW, Harris TB, Kritchevsky SB, Nevitt M, Schwartz AV, et al. The loss of skeletal muscle strength, mass, and quality in older adults: the health, aging and body composition study. J Gerontol A Biol Sci Med Sci. 2006;61(10):1059–64.

    Article  PubMed  Google Scholar 

  13. Janssen I, Heymsfield SB, Ross R. Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J Am Geriatr Soc. 2002;50(5):889–96.

    Article  PubMed  Google Scholar 

  14. Vetrano DL, Landi F, Volpato S, Corsonello A, Meloni E, Bernabei R, et al. Association of sarcopenia with short- and long-term mortality in older adults admitted to acute care wards: results from the CRIME study. J Gerontol A Biol Sci Med Sci. 2014;69(9):1154–61.

    Article  PubMed  Google Scholar 

  15. Krell RW, Kaul DR, Martin AR, Englesbe MJ, Sonnenday CJ, Cai S, et al. Association between sarcopenia and the risk of serious infection among adults undergoing liver transplantation. Liver Transpl. 2013;19(12):1396–402.

    Article  PubMed  Google Scholar 

  16. Sjoblom B, Gronberg BH, Wentzel-Larsen T, Baracos VE, Hjermstad MJ, Aass N, et al. Skeletal muscle radiodensity is prognostic for survival in patients with advanced non-small cell lung cancer. Clin Nutr. 2016;35(6):1386–93.

    Article  PubMed  Google Scholar 

  17. Sheetz KH, Zhao L, Holcombe SA, Wang SC, Reddy RM, Lin J, et al. Decreased core muscle size is associated with worse patient survival following esophagectomy for cancer. Dis Esophagus. 2013;26(7):716–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Sabel MS, Terjimanian M, Conlon AS, Griffith KA, Morris AM, Mulholland MW, et al. Analytic morphometric assessment of patients undergoing colectomy for colon cancer. J Surg Oncol. 2013;108(3):169–75.

    Article  PubMed  Google Scholar 

  19. Oliveira A, Vaz C. The role of sarcopenia in the risk of osteoporotic hip fracture. Clin Rheumatol. 2015;34(10):1673–80.

    Article  CAS  PubMed  Google Scholar 

  20. Boutin RD, Bamrungchart S, Bateni CP, Beavers DP, Beavers KM, Meehan JP, et al. CT of patients with hip fracture: muscle size and attenuation help predict mortality. AJR American journal of roentgenology. 2017:W1-W8.

  21. Martin L, Birdsell L, Macdonald N, Reiman T, Clandinin MT, McCargar LJ, et al. Cancer cachexia in the age of obesity: skeletal muscle depletion is a powerful prognostic factor, independent of body mass index. J Clin Oncol. 2013;31(12):1539–47.

    Article  PubMed  Google Scholar 

  22. Kumar A, Moynagh MR, Multinu F, Cliby WA, McGree ME, Weaver AL, et al. Muscle composition measured by CT scan is a measurable predictor of overall survival in advanced ovarian cancer. Gynecol Oncol. 2016;142(2):311–6.

    Article  PubMed  Google Scholar 

  23. Nakamura N, Hara T, Shibata Y, Matsumoto T, Nakamura H, Ninomiya S, et al. Sarcopenia is an independent prognostic factor in male patients with diffuse large B-cell lymphoma. Ann Hematol. 2015;94(12):2043–53.

    Article  PubMed  Google Scholar 

  24. Levis S, Altman R. Bone densitometry: clinical considerations. Arthritis Rheum. 1998;41(4):577–87.

    Article  CAS  PubMed  Google Scholar 

  25. Hughes VA, Frontera WR, Roubenoff R, Evans WJ, Singh MA. Longitudinal changes in body composition in older men and women: role of body weight change and physical activity. Am J Clin Nutr. 2002;76(2):473–81.

    Article  CAS  PubMed  Google Scholar 

  26. Lauretani F, Russo CR, Bandinelli S, Bartali B, Cavazzini C, Di Iorio A, et al. Age-associated changes in skeletal muscles and their effect on mobility: an operational diagnosis of sarcopenia. J Appl Physiol (1985). 2003;95(5):1851–60.

    Article  Google Scholar 

  27. Bokshan SL, Han AL, DePasse JM, Eltorai AE, Marcaccio SE, Palumbo MA, et al. Effect of sarcopenia on postoperative morbidity and mortality after thoracolumbar spine surgery. Orthopedics. 2016;39(6):e1159–64.

    Article  PubMed  Google Scholar 

  28. Nemec U, Heidinger B, Sokas C, Chu L, Eisenberg RL. Diagnosing sarcopenia on thoracic computed tomography: quantitative assessment of skeletal muscle mass in patients undergoing transcatheter aortic valve replacement. Acad Radiol. 2017.

  29. Camina Martin MA, de Mateo SB. Redondo del Rio MP. Body composition analysis in older adults with dementia. Anthropometry and bioelectrical impedance analysis: a critical review. Eur J Clin Nutr. 2014;68(11):1228–33.

    Article  CAS  PubMed  Google Scholar 

  30. Kushner RF, Gudivaka R, Schoeller DA. Clinical characteristics influencing bioelectrical impedance analysis measurements. Am J Clin Nutr. 1996;64(3 Suppl):423S–7S.

    Article  CAS  PubMed  Google Scholar 

  31. Rizzoli R, Reginster JY, Arnal JF, Bautmans I, Beaudart C, Bischoff-Ferrari H, et al. Quality of life in sarcopenia and frailty. Calcif Tissue Int. 2013;93(2):101–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wolfe RR. The underappreciated role of muscle in health and disease. Am J Clin Nutr. 2006;84(3):475–82.

    Article  CAS  PubMed  Google Scholar 

  33. Dawson-Hughes B, Bischoff-Ferrari H. Considerations concerning the definition of sarcopenia. Osteoporos Int. 2016;27(11):3139–44.

    Article  CAS  PubMed  Google Scholar 

  34. Sharma P, Zargar-Shoshtari K, Caracciolo JT, Fishman M, Poch MA, Pow-Sang J, et al. Sarcopenia as a predictor of overall survival after cytoreductive nephrectomy for metastatic renal cell carcinoma. Urol Oncol. 2015;33(8):339.e317–23.

    Article  Google Scholar 

  35. Silva JC, Moraes ZV, Silva C, Mazon Sde B, Guariento ME, Neri AL, et al. Understanding red blood cell parameters in the context of the frailty phenotype: interpretations of the FIBRA (frailty in Brazilian seniors) study. Arch Gerontol Geriatr. 2014;59(3):636–41.

    Article  PubMed  Google Scholar 

  36. Wilhelm-Leen ER, Hall YN. M KT, Chertow GM. Frailty and chronic kidney disease: the third national health and nutrition evaluation survey. Am J Med. 2009;122(7):664.671–e662.

    Article  Google Scholar 

  37. Morley JE. Undernutrition in older adults. Fam Pract. 2012;29(Suppl 1):i89–93.

    Article  PubMed  Google Scholar 

  38. van Vugt JL, Levolger S, de Bruin RW, van Rosmalen J, Metselaar HJ, JN IJ. Systematic review and meta-analysis of the impact of computed tomography-assessed skeletal muscle mass on outcome in patients awaiting or undergoing liver transplantation. Am J Transplant. 2016;16(8):2277–92.

    Article  PubMed  Google Scholar 

  39. DiMartini A, Cruz RJ Jr, Dew MA, Myaskovsky L, Goodpaster B, Fox K, et al. Muscle mass predicts outcomes following liver transplantation. Liver Transpl. 2013;19(11):1172–80.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jim S. Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Disclosures

None of the authors have any disclosures.

Beth Israel Deaconess Medical Center Institutional Review Board approved.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, CD., Wu, J.S., Mhuircheartaigh, J.N. et al. Effect of sarcopenia on clinical and surgical outcome in elderly patients with proximal femur fractures. Skeletal Radiol 47, 771–777 (2018). https://doi.org/10.1007/s00256-017-2848-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-017-2848-6

Keywords

Navigation