Skip to main content
Log in

The role of sarcopenia in the risk of osteoporotic hip fracture

  • Review Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Several common age-related mechanisms and factors influence muscle and bone, affecting functionality of both tissues. Sarcopenia is closely linked with osteoporosis, and their combined effect may exacerbate negative health outcomes. Fall-related fractures are some of the most serious consequences of these two systemic pathologies, with hip fracture being a major complication affecting osteoporotic and sarcopenic elderly. This work aims to review the literature on the current state of knowledge about the relations between sarcopenia and osteoporosis and to present the association between sarcopenia and osteoporosis and the risk of hip fracture. A literature search was performed in PubMed and Scopus databases for articles with the predefined terms “sarcopenia,” “muscular atrophy,” “femoral fractures,” “hip fractures,” “osteoporosis,” and “bone density.” There is a growing and significant interest being directed to sarcopenia and associated risk for osteoporotic hip fracture, but there still is a notorious heterogeneity in the methodology and cohort size of the available studies. Collectively, most of the studies herein analyzed indicate that sarcopenia could be a predictor of risk for hip fracture. The simultaneous evaluation of sarcopenia and osteoporosis may be of importance in identifying those patients in higher risk of suffering an osteoporotic hip fracture and who could benefit from preventive or therapeutic interventions, or both.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

BIA:

Bioelectrical impedance analysis

BMC:

Bone mineral content

BMD:

Bone mineral density

BMI:

Body mass index

CI:

Confidence interval

CT:

Computed tomography

DHEA:

Dehydroepiandrosterone

DXA:

Dual-energy X-ray absorptiometry

FGF-2:

Fibroblast growth factor 2

GH:

Growth hormone

IGF-1:

Insulin-like growth factor 1

LM:

Lean mass

MRI:

Magnetic resonance imaging

mTOR:

Mammalian target of rapamycin

OR:

Odds ratio

RANK:

Receptor activator of nuclear factor kappa-B

RANKL:

Receptor activator of nuclear factor kappa-B ligand

RR:

Relative risk

SD:

Standard deviation

SGK1:

Serum/glucocorticoid-induced kinase 1

SMI:

Skeletal muscle index

SMM:

Skeletal muscle mass

SPPB:

Short Physical Performance Battery

TNF-α:

Tumor necrosis factor α

WHO:

World Health Organization

Wt:

Body weight

References

  1. Rosenberg I (1989) The epidemiologic and methodologic problems in determining nutritional status of older persons. (Summary comments). Am J Clin Nutr 50:1231–1233

    Google Scholar 

  2. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, Martin FC, Michel JP, Rolland Y, Schneider SM, Topinková E, Vandewoude M, Zamboni M (2010) Sarcopenia: European consensus on definition and diagnosis: report of the European working group on sarcopenia in older people. Age Ageing 39:412–423

    Article  PubMed Central  PubMed  Google Scholar 

  3. Rubbieri G, Mossello E, Di Bari M (2014) Techniques for the diagnosis of sarcopenia. Clin Cases Miner Bone Metab 11(3):181–184

    PubMed Central  PubMed  Google Scholar 

  4. Dodds R, Sayer AA (2014) Sarcopenia. Arq Bras Endocrinol Metabol 58:464–469

    Article  PubMed  Google Scholar 

  5. Guralnik JM, Simonsick EM, Ferrucci L, Glynn RJ, Berkman LF, Blazer DG, Scherr PA, Wallace RB (1994) A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission. J Gerontol 49(2):M85–M94

    Article  CAS  PubMed  Google Scholar 

  6. Cederholm T, Cruz-Jentoft AJ, Maggi S (2013) Sarcopenia and fragility fractures. Eur J Phys Rehabil Med 49(1):111–117

    CAS  PubMed  Google Scholar 

  7. Janssen I, Shepard DS, Katzmarzyk PT, Roubenoff R (2004) The healthcare costs of sarcopenia in the United States. J Am Geriatr Soc 52(1):80–85

    Article  PubMed  Google Scholar 

  8. Lynch GS (2008) Update on emerging drugs for sarcopenia—age-related muscle wasting. Expert Opin Emerg Drugs 13(4):655–673

    Article  CAS  PubMed  Google Scholar 

  9. Kanis JA (2007) on behalf of the World Health Organization Scientific Group. Assessment of osteoporosis at the primary health care level. Technical Report. University of Sheffield UK: WHO Collaborating Center

  10. Pisani P, Renna MD, Conversano F, Casciaro E, Muratore M, Quarta E, Di Paola M, Casciaro S (2013) Screening and early diagnosis of osteoporosis through X-ray and ultrasound based techniques. World J Radiol 5(11):398–410

    Article  PubMed Central  PubMed  Google Scholar 

  11. Rolland Y, Abellan van Kan G, Benetos A, Blain H, Bonnefoy M, Chassagne P, Jeandel C, Laroche M, Nourhashemi F, Orcel P, Piette F, Ribot C, Ritz P, Roux C, Taillandier J, Tremollieres F, Weryha G, Vellas B (2008) Frailty, osteoporosis and hip fracture: causes, consequences and therapeutic perspectives. J Nutr Health Aging 12(5):335–346

    Article  CAS  PubMed  Google Scholar 

  12. Hernlund E, Svedbom A, Ivergard M, Compston J, Cooper C, Stenmark J, McCloskey EV, Jonsson B, Kanis JA (2013) Osteoporosis in the European Union: medical management, epidemiology and economic burden: a report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch Osteoporos 8(1–2):136

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Crepaldi G, Maggi S (2005) Sarcopenia and osteoporosis: a hazardous duet. J Endocrinol Invest 28(10 Suppl):66–68

    CAS  PubMed  Google Scholar 

  14. Di Monaco M, Castiglioni C, Vallero F, Di Monaco R, Tappero R (2012) Sarcopenia is more prevalent in men than in women after hip fracture: a cross-sectional study of 591 inpatients. Arch Gerontol Geriatr 55(2):E48–E52

    Article  PubMed  Google Scholar 

  15. Di Monaco M, Vallero F, Di Monaco R, Tappero R (2011) Prevalence of sarcopenia and its association with osteoporosis in 313 older women following a hip fracture. Arch Gerontol Geriatr 52(1):71–74

    Article  PubMed  Google Scholar 

  16. Di Monaco M, Vallero F, Di Monaco R, Tappero R, Cavanna A (2007) Skeletal muscle mass, fat mass, and hip bone mineral density in elderly women with hip fracture. J Bone Miner Metab 25(4):237–242

    Article  PubMed  Google Scholar 

  17. Di Monaco M, Vallero F, Di Monaco R, Tappero R, Cavanna A (2007) Fat mass and skeletal muscle mass in hip-fracture women: a cross-sectional study. Maturitas 56(4):404–410

    Article  PubMed  Google Scholar 

  18. Hida T, Ishiguro N, Shimokata H, Sakai Y, Matsui Y, Takemura M, Terabe Y, Harada A (2013) High prevalence of sarcopenia and reduced leg muscle mass in Japanese patients immediately after a hip fracture. Geriatr Gerontol Int 13(2):413–420

    Article  PubMed  Google Scholar 

  19. Lang T, Cauley JA, Tylavsky F, Bauer D, Cummings S, Harris TB (2010) Computed tomographic measurements of thigh muscle cross-sectional area and attenuation coefficient predict hip fracture: the health, aging, and body composition study. J Bone Miner Res 25(3):513–519

    Article  PubMed Central  PubMed  Google Scholar 

  20. Yu R, Leung J, Woo J (2014) Incremental predictive value of sarcopenia for incident fracture in an elderly Chinese cohort: results from the osteoporotic fractures in men (MrOs) study. J Am Med Dir Assoc 15(8):551–558

    Article  PubMed  Google Scholar 

  21. Capozza RF, Cure-Cure C, Cointry GR, Meta M, Cure P, Rittweger J, Ferretti JL (2008) Association between low lean body mass and osteoporotic fractures after menopause. Menopause 15(5):905–913

    Article  PubMed  Google Scholar 

  22. Calvani R, Martone AM, Marzetti E, Onder G, Savera G, Lorenzi M, Serafini E, Bernabei R, Landi F (2014) Pre-hospital dietary intake correlates with muscle mass at the time of fracture in older hip fractured patients. Front Aging Neurosci 6(269):1–6

    Google Scholar 

  23. Sjoblom S, Suuronen J, Rikkonen T, Honkanen R, Kroger H, Sirola J (2013) Relationship between postmenopausal osteoporosis and the components of clinical sarcopenia. Maturitas 75(2):175–180

    Article  PubMed  Google Scholar 

  24. Chen LY, Liu CL, Peng LN, Lin MH, Chen LK (2012) Associative factors of existing fragility fractures among elderly medical inpatients: a hospital-based study. J Clin Gerontol Geriatr 3(3):94–96

    Article  Google Scholar 

  25. Auais M, Morin S, Nadeau L, Finch L, Mayo N (2013) Changes in frailty-related characteristics of the hip fracture population and their implications for healthcare services: evidence from Quebec, Canada. Osteoporos Int 24(10):2713–2724

    Article  CAS  PubMed  Google Scholar 

  26. Singh MAF, Singh NA, Hansen RD, Finnegan TP, Allen BJ, Diamond TH, Diwan AD, Lloyd BD, Williamson DA, Smith EUR, Grady JN, Stavrinos TM, Thompson MW (2009) Methodology and baseline characteristics for the sarcopenia and hip fracture study: a 5-year prospective study. J Gerontol A Biol Sci Med Sci 64(5):568–574

    Article  PubMed  Google Scholar 

  27. Pagotto V, Silveira EA (2014) Methods, diagnostic criteria, cutoff points, and prevalence of sarcopenia among older people. Sci World J 2014:1–11

    Article  Google Scholar 

  28. Lloyd BD, Williamson DA, Singh NA, Hansen RD, Diamond TH, Finnegan TP, Allen BJ, Grady JN, Stavrinos TM, Smith EUR, Diwan AD, Fiatarone Singh MA (2009) Recurrent and injurious falls in the year following hip fracture: a prospective study of incidence and risk factors from the sarcopenia and hip fracture study. J Gerontol A Biol Sci Med Sci 64(5):599–609

    Article  PubMed  Google Scholar 

  29. Lee SG, Lee Y, Kim KJ, Lee W, Kwon OH, Kim JH (2013) Additive association of vitamin D insufficiency and sarcopenia with low femoral bone mineral density in noninstitutionalized elderly population: the Korea National Health and Nutrition Examination Surveys 2009–2010. Osteoporos Int 24(11):2789–2799

    Article  CAS  PubMed  Google Scholar 

  30. Aubertin-Leheudre M, Lord C, Labonte M, Khalil A, Dionne IJ (2008) Relationship between sarcopenia and fracture risks in obese postmenopausal women. J Women Aging 20(3–4):297–308

    Article  PubMed  Google Scholar 

  31. Palombaro KM, Hack LM, Mangione KK, Barr AE, Newton RA, Magri F, Speziale T (2009) Gait variability detects women in early postmenopause with low bone mineral density. Phys Ther 89(12):1315–1326

    Article  PubMed  Google Scholar 

  32. Salmaso FV, Vigário PS, de Mendonça LMC, Madeira M, Netto LV, Guimarães MRM, de Farias MLF (2014) Analysis of elderly outpatients in relation to nutritional status, sarcopenia, renal function, and bone density. Arq Bras Endocrinol Metabol 58(3):226–231

    Article  PubMed  Google Scholar 

  33. Cederholm T (2012) Sarcopenia, osteoporosis and fractures. In: Sarcopenia. pp 168–180

  34. Frisoli A Jr, Chaves PH, McNeill Ingham SJ, Fried LP (2011) Severe osteopenia and osteoporosis, sarcopenia, and frailty status in community-dwelling older women: results from the Women’s Health and Aging Study (WHAS) II. Bone 48(4):952–957

    Article  PubMed  Google Scholar 

  35. Cooper C, Dere W, Evans W, Kanis JA, Rizzoli R, Sayer AA, Sieber CC, Kaufman JM, van Kan GA, Boonen S, Adachi J, Mitlak B, Tsouderos Y, Rolland Y, Reginster JYL (2012) Frailty and sarcopenia: definitions and outcome parameters. Osteoporos Int 23(7):1839–1848

    Article  CAS  PubMed  Google Scholar 

  36. Hida T, Harada A, Imagama S, Ishiguro N (2014) Managing sarcopenia and its related-fractures to improve quality of life in geriatric populations. Aging Dis 5(4):226–237

    PubMed Central  PubMed  Google Scholar 

  37. Kim TN, Choi KM (2015) Sarcopenia: definition, epidemiology, and pathophysiology. J Bone Metab 20(1):1–10

    Article  Google Scholar 

  38. Coin A, Perissinotto E, Enzi G, Zamboni M, Inelmen EM, Frigo AC, Manzato E, Busetto L, Buja A, Sergi G (2008) Predictors of low bone mineral density in the elderly: the role of dietary intake, nutritional status and sarcopenia. Eur J Clin Nutr 62(6):802–809

    Article  CAS  PubMed  Google Scholar 

  39. Gillette-Guyonnet S, Nourhashemi F, Lauque S, Grandjean H, Vellas B (2000) Body composition and osteoporosis in elderly women. Gerontology 46(4):189–193

    Article  CAS  PubMed  Google Scholar 

  40. Walsh MC, Hunter GR, Livingstone MB (2006) Sarcopenia in premenopausal and postmenopausal women with osteopenia, osteoporosis and normal bone mineral density. Osteoporos Int 17(1):61–67

    Article  PubMed  Google Scholar 

  41. Malafarina V, Úriz-Otano F, Iniesta R, Gil-Guerrero L (2012) Sarcopenia in the elderly: diagnosis, physiopathology and treatment. Maturitas 71(2):109–114

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Catarina Gomes for the advice on the text.

Disclosure

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Oliveira or C. Vaz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, A., Vaz, C. The role of sarcopenia in the risk of osteoporotic hip fracture. Clin Rheumatol 34, 1673–1680 (2015). https://doi.org/10.1007/s10067-015-2943-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-015-2943-9

Keywords

Navigation