Skip to main content

Advertisement

Log in

Usefulness of metal artifact reduction with WARP technique at 1.5 and 3T MRI in imaging metal-on-metal hip resurfacings

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Objective

To evaluate the usefulness of the metal artifact reduction technique “WARP” in the assessment of metal-on-metal hip resurfacings at 1.5 and 3T in the context of image quality and imaging speed.

Materials and methods

Nineteen patients (25 hip resurfacings) were randomized for 1.5 and 3T MRI, both including T1 and T2 turbo spin-echo as well as turbo inversion recovery magnitude sequences with and without view angle tilting and high bandwidth. Additional 3T sequences were acquired with a reduced number of averages and using the parallel acquisition technique for accelerating imaging speed. Artifact size (diameter, area), image quality (5-point scale) and delineation of anatomical structures were compared among the techniques, sequences and field strengths using the Wilcoxon sign-rank and paired t-test with Bonferroni correction.

Results

At both field strengths, WARP showed significant superiority over standard sequences regarding image quality, artifact size and delineation of anatomical structures. At 3T, artifacts were larger compared to 1.5T without affecting diagnostic quality, and scanning time could be reduced by up to 64 % without quality degradation.

Conclusion

WARP proved useful in imaging metal-on-metal hip resurfacings at 1.5T as well as 3T with better image quality surrounding the implants. At 3T imaging could be considerably accelerated without losing diagnostic quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Koch KM, Hargreaves BA, Pauly KB, Chen W, Gold GE, King KF. Magnetic resonance imaging near metal implants. J Magn Reson Imaging. 2010;32:773–87.

    Article  CAS  PubMed  Google Scholar 

  2. Eustace S, Goldberg R, Williamson D, et al. MR imaging of soft tissues adjacent to orthopaedic hardware: techniques to minimize susceptibility artefact. Clin Radiol. 1997;52:589–94.

    Article  CAS  PubMed  Google Scholar 

  3. Cho ZH, Kim DJ, Kim YK. Total inhomogeneity correction including chemical shifts and susceptibility by view angle tilting. Med Phys. 1988;15:7–11.

    Article  CAS  PubMed  Google Scholar 

  4. Olsen RV, Munk PL, Lee MJ, et al. Metal artifact reduction sequence: early clinical applications. Radiographics. 2000;20:699–712.

    Article  CAS  PubMed  Google Scholar 

  5. Kolind SH, MacKay AL, Munk PL, Xiang QS. Quantitative evaluation of metal artifact reduction techniques. J Magn Reson Imaging. 2004;20:487–95.

    Article  PubMed  Google Scholar 

  6. Sutter R, Ulbrich EJ, Jellus V, Nittka M, Pfirrmann CW. Reduction of metal artifacts in patients with total hip arthroplasty with slice-encoding metal artifact correction and view-angle tilting MR imaging. Radiology. 2012;265:204–14.

    Article  PubMed  Google Scholar 

  7. Rahman L, Hall-Craggs M, Muirhead-Allwood SK. Radiology of the resurfaced hip. Skelet Radiol. 2011;40:819–30.

    Article  Google Scholar 

  8. Hartmann A, Hannemann F, Lutzner J, et al. Metal ion concentrations in body fluids after implantation of hip replacements with metal-on-metal bearing–systematic review of clinical and epidemiological studies. PLoS ONE. 2013;8:e70359.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Williams DH, Greidanus NV, Masri BA, Duncan CP, Garbuz DS. Prevalence of pseudotumor in asymptomatic patients after metal-on-metal hip arthroplasty. J Bone Joint Surg Am. 2011;93:2164–71.

    Article  PubMed  Google Scholar 

  10. Campbell P, Ebramzadeh E, Nelson S, Takamura K, De Smet K, Amstutz HC. Histological features of pseudotumor-like tissues from metal-on-metal hips. Clin Orthop Relat Res. 2010;468:2321–7.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Duggan PJ, Burke CJ, Saha S, et al. Current literature and imaging techniques of aseptic lymphocyte-dominated vasculitis-associated lesions (ALVAL). Clin Radiol. 2013;68:1089–96.

    Article  CAS  PubMed  Google Scholar 

  12. Fehring TK, Odum S, Sproul R, Weathersbee J. High frequency of adverse local tissue reactions in asymptomatic patients with metal-on-metal THA. Clin Orthop Relat Res. 2014;472:517–22.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Langton DJ, Joyce TJ, Jameson SS, et al. Adverse reaction to metal debris following hip resurfacing: the influence of component type, orientation and volumetric wear. J Bone Joint Surg (Br). 2011;93:164–71.

    Article  CAS  Google Scholar 

  14. Jameson SS, Baker PN, Mason J, Porter ML, Deehan DJ, Reed MR. Independent predictors of revision following metal-on-metal hip resurfacing: a retrospective cohort study using National Joint Registry data. J Bone Joint Surg (Br). 2012;94:746–54.

    Article  CAS  Google Scholar 

  15. Cohen D. How safe are metal-on-metal implants? BMJ. 2012;344.

  16. Bestic JM, Berquist TH. Current concepts in hip arthroplasty imaging: metal-on-metal prostheses, their complications, and imaging strategies. Semin Roentgenol. 2013;48:178–86.

    Article  PubMed  Google Scholar 

  17. Hart A. MRI investigations in patients with problems due to metal-on-metal implants. Orthopade. 2013;42:629–36.

    Article  PubMed  Google Scholar 

  18. Ostlere S. How to image metal-on-metal prostheses and their complications. AJR Am J Roentgenol. 2011;197:558–67.

    Article  PubMed  Google Scholar 

  19. Matthies AK, Skinner JA, Osmani H, Henckel J, Hart AJ. Pseudotumors are common in well-positioned low-wearing metal-on-metal hips. Clin Orthop Relat Res. 2012;470:1895–906.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Faul F, Erdfelder E, Buchner A, Lang AG. Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behav Res Methods. 2009;41:1149–60.

    Article  PubMed  Google Scholar 

  21. Chang SD, Lee MJ, Munk PL, Janzen DL, MacKay A, Xiang QS. MRI of spinal hardware: comparison of conventional T1-weighted sequence with a new metal artifact reduction sequence. Skelet Radiol. 2001;30:213–8.

    Article  CAS  Google Scholar 

  22. Lee MJ, Kim S, Lee SA, et al. Overcoming artifacts from metallic orthopedic implants at high-field-strength MR imaging and multi-detector CT. Radiographics. 2007;27:791–803.

    Article  PubMed  Google Scholar 

  23. Matsuura H, Inoue T, Ogasawara K, et al. Quantitative analysis of magnetic resonance imaging susceptibility artifacts caused by neurosurgical biomaterials: comparison of 0.5, 1.5, and 3.0 Tesla magnetic fields. Neurol Med Chir (Tokyo). 2005;45:395–8. discussion 398–399.

    Article  Google Scholar 

  24. Olsrud J, Latt J, Brockstedt S, Romner B, Bjorkman-Burtscher IM. Magnetic resonance imaging artifacts caused by aneurysm clips and shunt valves: dependence on field strength (1.5 and 3 T) and imaging parameters. J Magn Reson Imaging. 2005;22:433–7.

  25. Garbuz DS, Hargreaves BA, Duncan CP, Masri BA, Wilson DR, Forster BB. The John Charnley Award: diagnostic accuracy of MRI versus ultrasound for detecting pseudotumors in asymptomatic metal-on-metal THA. Clin Orthop Relat Res. 2014;472:417–23.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Lu W, Pauly KB, Gold GE, Pauly JM, Hargreaves BA. SEMAC: Slice Encoding for Metal Artifact Correction in MRI. Magn Reson Med. 2009;62:66–76.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Ai T, Padua A, Goerner F, et al. SEMAC-VAT and MSVAT-SPACE sequence strategies for metal artifact reduction in 1.5 T magnetic resonance imaging. Invest Radiol. 2012;47:267–76.

  28. Jungmann PM, Ganter C, Pohlig F, et al. View-Angle Tilting (VAT) und Slice-encoding Metal Artifact Correction (SEMAC) zur MR Bildgebung orthopädischer Tumor-Prothesen. Fortschr Röntgenstr. 2013;185:VO104–105.

    Google Scholar 

  29. Reichert M, Ai T, Nittka M, et al. Möglichkeiten zur Metallartefaktreduktion im MRT bei 1.5 Tesla als auch 3 Tesla unter Verwendung innovativer SequenztechnikenDeutscher Röntgenkonkress. Hamburg: Thieme; 2012. p. VO409–405.

    Google Scholar 

  30. Hargreaves BA, Chen W, Lu W, et al. Accelerated slice encoding for metal artifact correction. J Magn Reson Imaging. 2010;31:987–96.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Lazik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazik, A., Landgraeber, S., Schulte, P. et al. Usefulness of metal artifact reduction with WARP technique at 1.5 and 3T MRI in imaging metal-on-metal hip resurfacings. Skeletal Radiol 44, 941–951 (2015). https://doi.org/10.1007/s00256-015-2128-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-015-2128-2

Keywords

Navigation