Skip to main content

Advertisement

Log in

Magnetresonanztomographische Untersuchungen bei Problemen mit Metall-auf-Metall-Implantaten

MRI investigations in patients with problems due to metal-on-metal implants

  • Leitthema
  • Published:
Der Orthopäde Aims and scope Submit manuscript

An Erratum to this article was published on 12 January 2014

Abstract

Until recently, metal-on-metal (MoM) hip implants were commonly used for joint replacement and resurfacings. Their use has rapidly declined following reports of Frühversagen and soft tissue disease caused by the release of metal debris from the prosthesis. Detection of these soft tissue lesions has proven difficult using conventional imaging techniques and blood metal ion tests. Current guidelines recommend the use of imaging modalities including metal artefact reduction sequence (MARS) magnetic resonance imaging (MRI), computed tomography and ultrasound but provide little indication which is best. MARS significantly reduces the susceptibility artefact induced by the presence of metal objects, thereby producing diagnostic quality images that can be shared with other physicians and compared over time. The clinical interpretation of MRI findings of solid pseudotumours and severe muscle atrophy is straightforward: revision is usually recommended. However, the most common MRI findings are of a cystic pseudotumour and minor muscle wasting. In these cases decision-making is difficult and we currently use multi-disciplinary and multi-colleague based meetings to make decisions regarding patient management. This article presents a comparison of imaging modalities and an update on the interpretation of MARS MRI for the investigation of patients with MoM hip implants.

The English full-text version of this article is available at Springer Link (under “Supplemental”).

Zusammenfassung

Bis vor kurzem kamen Metall-Metall(MoM)-Gleitpaarungen in der Hüftendoprothetik regelmäßig zur Anwendung. Nach Berichten über Frühversagen und Weichteilschädigungen durch Metallabrieb hat ihr Einsatz schnell und stark abgenommen. Das Ausmaß der Weichteilschädigungen ist durch konventionelle radiologische Bildgebung und Metallionenbestimmung nur schwer zu bestimmen. In aktuellen Richtlinien werden Metallartefaktreduzierte Sequenzen (MARS) in der Magnetresonanztomographie (MRT), Computertomographie (CT) und Ultraschall empfohlen, zur Wertigkeit werden kaum Anhaltspunkte gegeben. MARS reduzieren die metallinduzierten Suszeptibilitätsartefakte deutlich und erzeugen klarere Bilder, die mehrfach befundet und im zeitlichen Verlauf beurteilt werden können. Die klinische Interpretation magnetresonanztomographisch sichtbarer solider Pseudotumoren und schwerer Muskelschädigungen ist unkompliziert, in der Regel wird eine operative Revision empfohlen. Doch die häufigsten MRT-Befunde sind zystische Pseudotumoren und diskrete Muskelatrophien. Dann ist die Entscheidungsfindung schwierig, und das weitere Vorgehen wird in multidisziplinären Sitzungen von mehreren Medizinern besprochen. Der Beitrag vergleicht bildgebende Verfahren und gibt ein Update zur Interpretation der MARS-MRT-Aufnahmen von MoM-Hüftendoprothesen.

Die englische Originalversion dieses Beitrags steht auf SpringerLink (unter „Supplement“) zur Verfügung.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Similar content being viewed by others

Literatur

  1. Bal BS, Lowe JA (2008) Muscle damage in minimally invasive total hip arthroplasty: MRI evidence that it is not significant. Instr Course Lect 57:223–229

    PubMed  Google Scholar 

  2. Beck M, Sledge JB, Gautier E et al (2000) The anatomy and function of the gluteus minimus muscle. J Bone Joint Surg Br 82:358–363

    Article  CAS  PubMed  Google Scholar 

  3. Cahir JG, Toms AP, Marshall TJ et al (2007) CT and MRI of hip arthroplasty. Clin Radiol 62:1163–1171 (discussion 72–73)

    Article  CAS  PubMed  Google Scholar 

  4. Chang EY, McAnally JL, Van Horne JR et al (2012) Metal-on-metal total hip arthroplasty: do symptoms correlate with MR imaging findings? Radiology 265:848–857

    Article  PubMed  Google Scholar 

  5. Donell ST, Darrah C, Nolan JF et al (2010) Early failure of the Ultima metal-on-metal total hip replacement in the presence of normal plain radiographs. J Bone Joint Surg Br 92:1501–1508

    Article  CAS  PubMed  Google Scholar 

  6. FDA (2013) Safety communication: metal-on-metal hip implants, food and drug administration. http://www.fda.gov/MedicalDevices/Safety/AlertsandNotices/ucm335775.htm. (Zugegriffen: 19. Mai 2013)

  7. Goutallier D, Postel JM, Bernageau J et al (1994) Fatty muscle degeneration in cuff ruptures. Pre- and postoperative evaluation by CT scan. Clin Orthop Relat Res 304:78–83

    PubMed  Google Scholar 

  8. Grammatopolous G, Pandit H, Kwon YM et al (2009) Hip resurfacings revised for inflammatory pseudotumour have a poor outcome. J Bone Joint Surg Br 91:1019–1024

    Article  CAS  PubMed  Google Scholar 

  9. Hananouchi T, Saito M, Nakamura N et al (2005) Huge pelvic mass secondary to wear debris causing ureteral obstruction. J Arthroplasty 20:946–949

    Article  PubMed  Google Scholar 

  10. Hannemann F, Hartmann A, Schmitt J et al (2013) European multidisciplinary consensus statement on the use and monitoring of metal-on-metal bearings for total hip replacement and hip resurfacing. Orthop Traumatol Surg Res 99:263–271

    Article  CAS  PubMed  Google Scholar 

  11. Hart AJ, Quinn PD, Lali F et al (2012) Cobalt from metal-on-metal hip replacements may be the clinically relevant active agent responsible for periprosthetic tissue reactions. Acta Biomater 8:3865–3873

    Article  CAS  PubMed  Google Scholar 

  12. Hart AJ, Quinn PD, Sampson B et al (2010) The chemical form of metallic debris in tissues surrounding metal-on-metal hips with unexplained failure. Acta Biomater 6:4439–4446

    Article  CAS  PubMed  Google Scholar 

  13. Hart AJ, Sabah SA, Bandi AS et al (2011) Sensitivity and specificity of blood cobalt and chromium metal ions for predicting failure of metal-on-metal hip replacement. J Bone Joint Surg Br 93:1308–1313

    Article  CAS  PubMed  Google Scholar 

  14. Hart AJ, Sabah S, Henckel J et al (2009) The painful metal-on-metal hip resurfacing. J Bone Joint Surg Br 91:738–744

    Article  CAS  PubMed  Google Scholar 

  15. Hart AJ, Satchithananda K, Liddle AD et al (2012) Pseudotumors in association with well-functioning metal-on-metal hip prostheses: a case-control study using three-dimensional computed tomography and magnetic resonance imaging. J Bone Joint Surg Am 94:317–325

    PubMed  Google Scholar 

  16. Hauptfleisch J, Pandit H, Grammatopoulos G et al (2012) A MRI classification of periprosthetic soft tissue masses (pseudotumours) associated with metal-on-metal resurfacing hip arthroplasty. Skeletal Radiol 41:149–155

    Article  PubMed  Google Scholar 

  17. Hayter CL, Koff MF, Shah P et al (2011) MRI after arthroplasty: comparison of MAVRIC and conventional fast spin-echo techniques. AJR Am J Roentgenol 197:W405–W411

    Article  PubMed  Google Scholar 

  18. Jacobs JJ (2012) The utility of MARS MRI in patients with metal-on-metal bearings: commentary on an article by Alister J. Hart, MA, MD, FRCSG(Orth), et al.: „Pseudotumors in association with well-functioning metal-on-metal hip prostheses. a case-control study using three-dimensional computed tomography and magnetic resonance imaging“. J Bone Joint Surg Am 94:e26

    PubMed  Google Scholar 

  19. Johnston C, Kerr J, Ford S et al (2007) MRI as a problem-solving tool in unexplained failed total hip replacement following conventional assessment. Skeletal Radiol 36:955–961

    Article  PubMed  Google Scholar 

  20. Leigh W, O’Grady P, Lawson EM et al (2008) Pelvic pseudotumor: an unusual presentation of an extra-articular granuloma in a well-fixed total hip arthroplasty. J Arthroplasty 23:934–938

    Article  PubMed  Google Scholar 

  21. Mak KH, Wong TK, Poddar NC (2001) Wear debris from total hip arthroplasty presenting as an intrapelvic mass. J Arthroplasty 16:674–676

    Article  CAS  PubMed  Google Scholar 

  22. Malek IA, King A, Sharma H et al (2012) The sensitivity, specificity and predictive values of raised plasma metal ion levels in the diagnosis of adverse reaction to metal debris in symptomatic patients with a metal-on-metal arthroplasty of the hip. J Bone Joint Surg Br 94:1045–1050

    Article  CAS  PubMed  Google Scholar 

  23. Mao X, Tay GH, Godbolt DB et al (2012) Pseudotumor in a well-fixed metal-on-polyethylene uncemented hip arthroplasty. J Arthroplasty 27:493.e13–e17

    Article  PubMed  Google Scholar 

  24. Masonis JL, Bourne RB (2002) Surgical approach, abductor function, and total hip arthroplasty dislocation. Clin Orthop Relat Res 46–53

  25. MHRA (2012) Medical Device Alert/2012/008. http://www.mhra.gov.uk/home/groups/dts-bs/documents/medicaldevicealert/con143787.pdf. (Zugegriffen: 14. Mai 2013)

  26. MHRA (2010) Medical Device Alert/2012/033. http://www.mhra.gov.uk/home/groups/dts-bs/documents/medicaldevicealert/con079162.pdf. (Zugegriffen: 14. Mai 2013)

  27. MHRA (2012) Medical Device Alert/2012/036. http://www.mhra.gov.uk/home/groups/dts-bs/documents/medicaldevicealert/con155767.pdf. (Zugegriffen: 14. Mai 2013)

  28. Mistry A, Cahir J, Donell ST et al (2011) MRI of asymptomatic patients with metal-on-metal and polyethylene-on-metal total hip arthroplasties. Clin Radiol 66:540–545

    Article  CAS  PubMed  Google Scholar 

  29. Munro JT, Masri BA, Duncan CP, Garbuz DS (2013) High complication rate after revision of large-head metal-on-metal total hip arthroplasty. Clin Orthop Relat Res

  30. O’Brien TJ, Ceryak S, Patierno SR (2003) Complexities of chromium carcinogenesis: role of cellular response, repair and recovery mechanisms. Mutat Res 533:3–36

    Article  Google Scholar 

  31. Odak S, Ivory J (2013) Management of abductor mechanism deficiency following total hip replacement. Bone Joint J 95-B:343–347

    Google Scholar 

  32. Pandit H, Glyn-Jones S, McLardy-Smith P et al (2008) Pseudotumours associated with metal-on-metal hip resurfacings. J Bone Joint Surg Br 90:847–851

    Article  CAS  PubMed  Google Scholar 

  33. Pfirrmann CW, Notzli HP, Dora C et al (2005) Abductor tendons and muscles assessed at MR imaging after total hip arthroplasty in asymptomatic and symptomatic patients. Radiology 235:969–976

    Article  PubMed  Google Scholar 

  34. Roth TD, Maertz NA, Parr JA et al (2012) CT of the hip prosthesis: appearance of components, fixation, and complications. Radiographics 32:1089–1107

    Article  PubMed  Google Scholar 

  35. Sabah SA, Mitchell AW, Henckel J et al (2011) Magnetic resonance imaging findings in painful metal-on-metal hips: a prospective study. J Arthroplasty 26:71–76, 76.e1–e2

    Article  PubMed  Google Scholar 

  36. Smith AJ, Dieppe P, Porter M, Blom AW (2012) Risk of cancer in first seven years after metal-on-metal hip replacement compared with other bearings and general population: linkage study between the National Joint Registry of England and Wales and hospital episode statistics. BMJ 344:e2383

    Article  PubMed Central  PubMed  Google Scholar 

  37. Smith AJ, Dieppe P, Vernon K et al (2012) Failure rates of stemmed metal-on-metal hip replacements: analysis of data from the National Joint Registry of England and Wales. Lancet 379:1199–1204

    Article  PubMed  Google Scholar 

  38. Standring S (2008) Gray’s anatomy: the anatomical basis of clinical practice, Vol. 40th edn. Churchill Livingstone

  39. Uhthoff HK, Matsumoto F, Trudel G et al (2003) Early reattachment does not reverse atrophy and fat accumulation of the supraspinatus—an experimental study in rabbits. J Orthop Res 21:386–392

    Article  PubMed  Google Scholar 

  40. Walde TA, Weiland DE, Leung SB et al (2005) Comparison of CT, MRI, and radiographs in assessing pelvic osteolysis: a cadaveric study. Clin Orthop Relat Res 138–144

  41. Walsh AJ, Nikolaou VS, Antoniou J (2012) Inflammatory pseudotumor complicating metal-on-highly cross-linked polyethylene total hip arthroplasty. J Arthroplasty 27:324.e5–e8

    Article  PubMed  Google Scholar 

  42. Wang JW, Lin CC (1996) Pelvic mass caused by polyethylene wear after uncemented total hip arthroplasty. J Arthroplasty 11:626–628

    Article  CAS  PubMed  Google Scholar 

  43. Tab. 1

  44. Klassifikation der fettigen Muskeldegeneration. (Nach Goutallier et al. [15])

  45. Grad

  46. Charakteristik

  47. Prozentualer Anteil Fett (MRT; in %)

  48. 0

  49. Normale Muskulatur

  50. 0

  51. 1

  52. Muskulatur mit einigen Fettstreifen

  53. bis 25

  54. 2

  55. Deutliche fettige Infiltration mit mehr Muskulatur als Fett

  56. 26 bis 49

  57. 3

  58. Deutliche fettige Infiltration mit gleich viel Muskulatur wie Fett

  59. 50

  60. 4

  61. Ausgeprägte fettige Infiltration mit weniger Muskulatur als Fett

  62. mehr als 50999

Download references

Interessenkonflikt

Der korrespondierende Autor weist für sich und seine Koautoren auf folgende Beziehung/en hin: AH berät Depuy zum klinischen Assessment von Patienten mit MoM-Hüftendoprothesen. KS ist Mitglied in einer für Johnson und Johnson tätigen Kommission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hart.

Zusatzmaterial online

132_2012_2036_MOESM1_ESM.pdf

English Version of: „Magnetresonanztomographische Untersuchungen bei Problemen mit Metall-auf-Metall-Implantaten“ (PDF 0,6MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hart, A. Magnetresonanztomographische Untersuchungen bei Problemen mit Metall-auf-Metall-Implantaten. Orthopäde 42, 629–636 (2013). https://doi.org/10.1007/s00132-012-2036-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-012-2036-2

Keywords

Schlüsselwörter

Navigation