Skip to main content
Log in

LsSpt23p is a regulator of triacylglycerol synthesis in the oleaginous yeast Lipomyces starkeyi

  • Applied Genetics and Molecular Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The oleaginous yeast Lipomyces starkeyi has considerable potential in industrial application, since it can accumulate a large amount of triacylglycerol (TAG), which is produced from sugars under nitrogen limitation condition. However, the regulation of lipogenesis in L. starkeyi has not been investigated in depth. In this study, we compared the genome sequences of wild-type and mutants with increased TAG productivity, and identified a regulatory protein, LsSpt23p, which contributes to the regulation of TAG synthesis in L. starkeyi. L. starkeyi mutants overexpressing LsSPT23 had increased TAG productivity compared with the wild-type strain. Quantitative real-time PCR analysis showed that LsSpt23p upregulated the expression of GPD1, which encodes glycerol 3-phosphate dehydrogenase; the Kennedy pathway genes SCT1, SLC1, PAH1, DGA1, and DGA2; the citrate-mediated acyl-CoA synthesis pathway-related genes ACL1, ACL2, ACC1, FAS1, and FAS2; and OLE1, which encodes ∆9 fatty acid desaturase. Chromatin immunoprecipitation-quantitative PCR assays indicated that LsSpt23p acts as a direct regulator of SLC1 and PAH1, all the citrate-mediated acyl-CoA synthesis pathway–related genes, and OLE1. These results indicate that LsSpt23p regulates TAG synthesis. Phosphatidic acid is a common substrate of phosphatidic acid phosphohydrolase, which is used for TAG synthesis, and phosphatidate cytidylyltransferase 1 for phospholipid synthesis in the Kennedy pathway. LsSpt23p directly regulated PAH1 but did not affect the expression of CDS1, suggesting that the preferred route of carbon is the Pah1p-mediated TAG synthesis pathway under nitrogen limitation condition. The present study contributes to understanding the regulation of TAG synthesis, and will be valuable in future improvement of TAG productivity in oleaginous yeasts.

Key points

LsSpt23p was identified as a positive regulator of TAG biosynthesis

LsSPT23 overexpression enhanced TAG biosynthesis gene expression and TAG production

LsSPT23 M1108T overexpression mutant showed fivefold higher TAG production than control

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The raw data supporting the conclusion of this article will be made available by the authors, without undue reservation.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  • Azad A, Yousuf A, Ferdoush A, Hasan M, Karim M, Jahan A (2014) Production of microbial lipids from rice straw hydrolysates by lipomyces starkeyi for biodiesel synthesis. J Microb Biochem Technol S 8(2)

  • Ballweg S, Ernst R (2017) Control of membrane fluidity: the OLE pathway in focus. Biol Chem 398(2):215–228

    Article  CAS  Google Scholar 

  • Beligon V, Christophe G, Fontanille P, Larroche C (2016) Microbial lipids as potential source to food supplements. Curr Opin Food Sci 7:35–42

    Article  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J of Biochem Physiol 37(8):911–917

    Article  CAS  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120

    Article  CAS  Google Scholar 

  • Brandenburg J, Blomqvist J, Pickova J, Bonturi N, Sandgren M, Passoth V (2016) Lipid production from hemicellulose with Lipomyces starkeyi in a pH regulated fed-batch cultivation. Yeast 33(8):451–462

    Article  CAS  Google Scholar 

  • Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6(2):80–92

    Article  CAS  Google Scholar 

  • Deinema MH, Landheer C (1956) Composition of fats, produced by lipomyces starkeyi, under various conditions. Arch Mikrobiol 25(2):193–200

    Article  CAS  Google Scholar 

  • Dulermo T, Nicaud J-M (2011) Involvement of the G3P shuttle and β-oxidation pathway in the control of TAG synthesis and lipid accumulation in Yarrowia lipolytica. Metab Eng 13(5):482–491

    Article  CAS  Google Scholar 

  • Guo M, Cheng S, Chen G, Chen J (2019) Improvement of lipid production in oleaginous yeast Rhodosporidium toruloides by ultraviolet mutagenesis. Eng Life Sci 19(8):548–556

    Article  CAS  Google Scholar 

  • Hereford L, Fahrner K, Woolford J Jr, Rosbash M, Kaback DB (1979) Isolation of yeast histone genes H2A and H2B. Cell 18(4):1261–1271

    Article  CAS  Google Scholar 

  • Hernández MA, Alvarez HM (2019) Increasing lipid production using an NADP+-dependent malic enzyme from Rhodococcus jostii. Microbiol 165(1):4–14

    Article  Google Scholar 

  • Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G, Pesseat S, Quinn AF, Sangrador-Vegas A, Scheremetjew M, Yong SY, Lopez R, Hunter S (2014) InterProScan 5: genome-scale protein function classification. Bioinforma 30(9):1236–1240

    Article  CAS  Google Scholar 

  • Juanssilfero AB, Kahar P, Amza RL, Miyamoto N, Otsuka H, Matsumoto H, Kihira C, Thontowi A, Ogino C, Prasetya B, Kondo A (2018) Effect of inoculum size on single-cell oil production from glucose and xylose using oleaginous yeast Lipomyces starkeyi. J Biosci Bioeng 125(6):695–702

    Article  CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947–2948

    Article  CAS  Google Scholar 

  • Li H (2011) A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinforma 27(21):2987–2993

    Article  CAS  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinforma 25(14):1754–1760

    Article  CAS  Google Scholar 

  • Li Q, Du W, Liu D (2008) Perspectives of microbial oils for biodiesel production. Appl Microbiol Biotechnol 80(5):749–756

    Article  CAS  Google Scholar 

  • Liu L, Markham K, Blazeck J, Zhou N, Leon D, Otoupal P, Alper HS (2015) Surveying the lipogenesis landscape in Yarrowia lipolytica through understanding the function of a Mga2p regulatory protein mutant. Metab Eng 31:102–111

    Article  Google Scholar 

  • Makrantoni V, Robertson D, Marston AL (2019) Analysis of the chromosomal localization of yeast SMC complexes by chromatin immunoprecipitation. In: Badrinarayanan A (ed) SMC Complexes. Methods in molecular biology, vol 2004. Humana, New York, pp 119–138

  • Nguyen Ba AN, Pogoutse A, Provart N, Moses AM (2009) NLStradamus: a simple Hidden Markov Model for nuclear localization signal prediction. BMC Bioinf 10(1):1–11

    Article  Google Scholar 

  • Oguri E, Masaki K, Naganuma T, Iefuji H (2012) Phylogenetic and biochemical characterization of the oil-producing yeast Lipomyces starkeyi. Antonie Van Leeuwenhoek 101(2):359–368

    Article  CAS  Google Scholar 

  • Oguro Y, Yamazaki H, Ara S, Shida Y, Ogasawara W, Takagi M, Takaku H (2017) Efficient gene targeting in non-homologous end-joining-deficient Lipomyces starkeyi strains. Curr Genet 63(4):751–763

    Article  CAS  Google Scholar 

  • Oh C-S, Martin CE (2006) Candida albicans Spt23p controls the expression of the Ole1p Δ9 fatty acid desaturase and regulates unsaturated fatty acid biosynthesis. J Biol Chem 281(11):7030–7039

    Article  CAS  Google Scholar 

  • Ratledge C (2014) The role of malic enzyme as the provider of NADPH in oleaginous microorganisms: a reappraisal and unsolved problems. Biotechnol Lett 36(8):1557–1568

    Article  CAS  Google Scholar 

  • Ratledge C, Wynn JP (2002) The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv Appl Microbiol 51:1–52

    Article  CAS  Google Scholar 

  • Riley R, Haridas S, Wolfe KH, Lopes MR, Hittinger CT, Göker M, Salamov AA, Wisecaver JH, Long TM, Calvey CH, Aerts AL, Barry KW, Choi C, Clum A, Coughlan AY, Deshpande S, Douglass AP, Hanson SJ, Klenk HP, LaButti KM, Lapidus A, Lindquist EA, Lipzen AM, Meier-Kolthoff JP, Ohm RA, Otillar RP, Pangilinan JL, Peng Y, Rokas A, Rosa CA, Scheuner C, Sibirny AA, Slot JC, Stielow JB, Sun H, Kurtzman CP, Blackwell M, Grigoriev IV, Jeffries TW (2016) Comparative genomics of biotechnologically important yeasts. Proc Natl Acad Sci USA 113(35):9882–9887

    Article  CAS  Google Scholar 

  • Sato R, Ara S, Yamazaki H, Ishiya K, Aburatani S, Takaku H (2021) Citrate-mediated Acyl-CoA synthesis is required for the promotion of growth and triacylglycerol production in oleaginous yeast Lipomyces starkeyi. Microorganisms 9(8):1693

    Article  CAS  Google Scholar 

  • Seip J, Jackson R, He H, Zhu Q, Hong S-P (2013) Snf1 is a regulator of lipid accumulation in Yarrowia lipolytica. Appl Environ Microbiol 79(23):7360–7370

    Article  CAS  Google Scholar 

  • Signori L, Ami D, Posteri R, Giuzzi A, Mereghetti P, Porro D, Branduardi P (2016) Assessing an effective feeding strategy to optimize crude glycerol utilization as sustainable carbon source for lipid accumulation in oleaginous yeasts. Microb Cell Fact 15(1):75

    Article  Google Scholar 

  • Sonnhammer EL, Östlund G (2015) InParanoid 8: orthology analysis between 273 proteomes, mostly eukaryotic. Nucleic Acids Res 43(D1):D234–D239

    Article  CAS  Google Scholar 

  • Stukey JE, McDonough VM, Martin CE (1989) Isolation and characterization of OLE1, a gene affecting fatty acid desaturation from Saccharomyces cerevisiae. J Biol Chem 264(28):16537–16544

    Article  CAS  Google Scholar 

  • Tai M, Stephanopoulos G (2013) Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production. Metab Eng 15:1–9

    Article  CAS  Google Scholar 

  • Takaku H, Matsuzawa T, Yaoi K, Yamazaki H (2020a) Lipid metabolism of the oleaginous yeast Lipomyces starkeyi. Appl Microbiol Biotechnol 104(14):6141–6148

    Article  CAS  Google Scholar 

  • Takaku H, Miyajima A, Kazama H, Sato R, Ara S, Matsuzawa T, Yaoi K, Araki H, Shida Y, Ogasawara W, Yamazaki H (2020b) A novel electroporation procedure for highly efficient transformation of Lipomyces starkeyi. J Microbiol Methods 169:105816

    Article  CAS  Google Scholar 

  • Takaku H, Ebina S, Kasuga K, Sato R, Ara S, Kazama H, Matsuzawa T, Yaoi K, Araki H, Shida Y, Wataru O, Koji I, Sachiyo A, Yamazaki H (2021a) Isolation and characterization of Lipomyces starkeyi mutants with greatly increased lipid productivity following UV irradiation. J Biosci Bioeng 131(6):613–621

    Article  CAS  Google Scholar 

  • Takaku H, Yamazaki H, Araki H, Aburatani S, Yaoi K (2021b) Lipid production control factor for oleaginous yeast. WIPO 2021:171925A1

  • Vasconcelos B, Teixeira JC, Dragone G, Teixeira JA (2019) Oleaginous yeasts for sustainable lipid production—from biodiesel to surf boards, a wide range of “green” applications. Appl Microbiol Biotechnol 103(9):3651–3667

    Article  CAS  Google Scholar 

  • Wang Z-P, Xu H-M, Wang G-Y, Chi Z, Chi Z-M (2013) Disruption of the MIG1 gene enhances lipid biosynthesis in the oleaginous yeast Yarrowia lipolytica ACA-DC 50109. Biochimi Biophys Acta Mol Cell Biol Lipids 1831(4):675–682

    Article  CAS  Google Scholar 

  • Wang R, Wang J, Xu R, Fang Z, Liu A (2014) Oil production by the oleaginous yeast Lipomyces starkeyi using diverse carbon sources. BioResources 9(4):7027–7040

    Article  Google Scholar 

  • Wynn JP, Hamid AA, Li Y, Ratledge C (2001) Biochemical events leading to the diversion of carbon into storage lipids in the oleaginous fungi Mucor circinelloides and Mortierella alpina. Microbiol 147(10):2857–2864

    Article  CAS  Google Scholar 

  • Yamada R, Kashihara T, Ogino H (2017a) Improvement of lipid production by the oleaginous yeast Rhodosporidium toruloides through UV mutagenesis. World J Microbiol Biotechnol 33(5):99–99

    Article  Google Scholar 

  • Yamada R, Yamauchi A, Kashihara T, Ogino H (2017b) Evaluation of lipid production from xylose and glucose/xylose mixed sugar in various oleaginous yeasts and improvement of lipid production by UV mutagenesis. Biochem Eng J 128:76–82

    Article  CAS  Google Scholar 

  • Yamazaki H, Kobayashi S, Ebina S, Abe S, Ara S, Shida Y, Ogasawara W, Yaoi K, Araki H, Takaku H (2019) Highly selective isolation and characterization of Lipomyces starkeyi mutants with increased production of triacylglycerol. Appl Microbiol Biotechnol 103(15):6297–6308

    Article  CAS  Google Scholar 

  • Yu A-Q, Shi T-L, Zhang B, Xing L-J, Li M-C (2012) Transcriptional regulation of desaturase genes in Pichia pastoris GS115. Lipids 47(11):1099–1108

    Article  CAS  Google Scholar 

  • Zhang S, Skalsky Y, Garfinkel DJ (1999) MGA2 or SPT23 is required for transcription of the Δ9 fatty acid desaturase gene, OLE1, and nuclear membrane integrity in Saccharomyces cerevisiae. Genetics 151(2):473–483

    Article  CAS  Google Scholar 

  • Zhang S, Skerker JM, Rutter CD, Maurer MJ, Arkin AP, Rao CV (2016) Engineering Rhodosporidium toruloides for increased lipid production. Biotechnol Bioeng 113(5):1056–1066

    Article  CAS  Google Scholar 

Download references

Funding

This research was partially funded by the New Energy and Industrial Technology Development Organization (NEDO), “Development of Production Techniques for Highly Functional Biomaterials Using Smart Cells of Plants and Other Organisms (Smart Cell Project)”, “Development of bio-based production technology to accelerate Carbon Recycling”, and JSPS KAKENHI (Grant Number 22H02250).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, H.T., S.K., H.Y., and S. Abratani; formal analysis, H.T., H.K., R.S., K.M., S. Ara, and K.I.; investigation, H.T., H.K., R.S., K.M., S. Ara, K.I., T.M., K.Y., H.A., Y.S., W.O., K.T., S.K., and H.Y.; writing—original draft preparation, H.T., K.I. and S. Abratani; writing—review and editing, H.T., T.M., K.Y., H.A., Y.S., W.O., K.T., H.Y., and S. Abratani; supervision, H.T. and S. Abratani; project administration, H.T. and S. Abratani; funding acquisition, H.T., K.Y., S.K., and S.Abratani. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Hiroaki Takaku.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2436 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takaku, H., Kazama, H., Sato, R. et al. LsSpt23p is a regulator of triacylglycerol synthesis in the oleaginous yeast Lipomyces starkeyi. Appl Microbiol Biotechnol 107, 1269–1284 (2023). https://doi.org/10.1007/s00253-023-12361-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-023-12361-2

Keywords

Navigation