Skip to main content

Advertisement

Log in

Diversity and degradative capabilities of bacteria and fungi isolated from oil-contaminated and hydrocarbon-polluted soils in Kazakhstan

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Bacteria and fungi were isolated from eight different soil samples from different regions in Kazakhstan contaminated with oil or salt or aromatic compounds. For the isolation of the organisms, we used, on the one hand, typical hydrocarbons such as the well utilizable aliphatic alkane tetradecane, the hardly degradable multiple-branched alkane pristane, and the biaromatic compound biphenyl as enrichment substrates. On the other hand, we also used oxygenated derivatives of alicyclic and monoaromatic hydrocarbons, such as cyclohexanone and p-tert-amylphenol, which are known as problematic pollutants. Seventy-nine bacterial and fungal strains were isolated, and 32 of them that were clearly able to metabolize some of these substrates, as tested by HPLC-UV/Vis and GC-MS analyses, were characterized taxonomically by DNA sequencing. Sixty-two percent of the 32 isolated strains from 14 different genera belong to well-described hydrocarbon degraders like some Rhodococci as well as Acinetobacter, Pseudomonas, Fusarium, Candida, and Yarrowia species. However, species of the bacterial genus Curtobacterium, the yeast genera Lodderomyces and Pseudozyma, as well as the filamentous fungal genera Purpureocillium and Sarocladium, which have rarely been described as hydrocarbon degrading, were isolated and shown to be efficient tetradecane degraders, mostly via monoterminal oxidation. Pristane was exclusively degraded by Rhodococcus isolates. Candida parapsilosis, Fusarium oxysporum, Fusarium solani, and Rhodotorula mucilaginosa degraded cyclohexanone, and in doing so accumulate ε-caprolactone or hexanedioic acid as metabolites. Biphenyl was transformed by Pseudomonas/Stenotrophomonas isolates. When p-tert-amylphenol was used as growth substrate, none of the isolated strains were able to use it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Download references

Acknowledgments

We thank R. Jack (Prof. emeritus, Institute of Immunology, University of Greifswald) for help in preparing the manuscript. We thank CABNET (Central Asian Biodiversity Network), in particular the project manager Michael Manthey (Institute of Botany and Landscape Ecology, University of Greifswald), for the opportunity to establish active contacts between scientists from the Al-Farabi Kazakh National University and the University of Greifswald.

Funding

This study was funded by DAAD (Deutscher Akademischer Austauschdienst) (project code 50754935, project title “CABNET-Central Asian Biodiversity Network”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annett Mikolasch.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 842 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikolasch, A., Donath, M., Reinhard, A. et al. Diversity and degradative capabilities of bacteria and fungi isolated from oil-contaminated and hydrocarbon-polluted soils in Kazakhstan. Appl Microbiol Biotechnol 103, 7261–7274 (2019). https://doi.org/10.1007/s00253-019-10032-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-019-10032-9

Keywords

Navigation