Skip to main content

Advertisement

Log in

Community structure and PAH ring-hydroxylating dioxygenase genes of a marine pyrene-degrading microbial consortium

  • Original Article
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Marine microbial consortium UBF, enriched from a beach polluted by the Prestige oil spill and highly efficient in degrading this heavy fuel, was subcultured in pyrene minimal medium. The pyrene-degrading subpopulation (UBF-Py) mineralized 31 % of pyrene without accumulation of partially oxidized intermediates indicating the cooperation of different microbial components in substrate mineralization. The microbial community composition was characterized by culture dependent and PCR based methods (PCR-DGGE and clone libraries). Molecular analyses showed a highly stable community composed by Alphaproteobacteria (84 %, Breoghania, Thalassospira, Paracoccus, and Martelella) and Actinobacteria (16 %, Gordonia). The members of Thalasosspira and Gordonia were not recovered as pure cultures, but five additional strains, not detected in the molecular analysis, that classified within the genera Novosphingobium, Sphingopyxis, Aurantimonas (Alphaproteobacteria), Alcanivorax (Gammaproteobacteria) and Micrococcus (Actinobacteria), were isolated. None of the isolates degraded pyrene or other PAHs in pure culture. PCR amplification of Gram-positive and Gram-negative dioxygenase genes did not produce results with any of the cultured strains. However, sequences related to the NidA3 pyrene dioxygenase present in mycobacterial strains were detected in UBF-Py consortium, suggesting the representative of Gordonia as the key pyrene degrader, which is consistent with a preeminent role of actinobacteria in pyrene removal in coastal environments affected by marine oil spills.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alexander M (1999) Biodegradation and Bioremediation, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Amann RI, Ludwig W, Scheleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    CAS  PubMed Central  PubMed  Google Scholar 

  • Arulazhagan P, Vasudevan N (2009) Role of a moderately halophilic bacterial consortium in the biodegradation of polyaromatic hydrocarbons. Mar Pollut Bull 58:256–262

    Article  CAS  PubMed  Google Scholar 

  • Arulazhagan P, Vasudevan N (2011) Biodegradation of polycyclic aromatic hydrocarbons by an halotolerant bacterial strain Ochrobactrum sp. VA1. Mar Pollut Bull 62:388–394

    Article  CAS  PubMed  Google Scholar 

  • Brezna B, Khan AA, Cerniglia CE (2003) Molecular characterization of dioxygenases from a polycyclic aromatic hydrocarbon-degrading Mycobacterium sp. FEMS Microbiol Lett 223:177–183

    Article  CAS  PubMed  Google Scholar 

  • Cappello S, Denaro R, Genovese M, Giuliano L, Yakimov MM (2007) Predominant growth of Alcanivorax during experiments on “oil spill bioremediation” in mesocosms. Microb Res 162:185–190

    Article  CAS  Google Scholar 

  • Cébron A, Norini MP, Beguiristain T, Leyval C (2008) Real-Time PCR quantification of PAH-ring hydroxylating dioxygenase (PAH-RHDα) genes from Gram-positive and Gram-negative bacteria in soil and sediment samples. J Microbiol Methods 73:148–159

    Article  PubMed  Google Scholar 

  • Cole JR, Chai B, Marsh TL (2003) The ribosomal database project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acid Res 31:442–443

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cui Z, Lai Q, Dong C, Shao Z (2008) Biodiversity of polycyclic aromatic hydrocarbon-degrading bacteria from deep sea sediments of the Middle Atlantic Ridge. Environ Microbiol 10:2138–2149

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Daniels L, Handson RS, Phillips JA (1994) Chemical Abalyses. In: Gerhardt AP, Murray RGE, Wood WA, Krieg NR (eds) Methods for General and Molocular Bacteriology. ASM Press, Washington DC, pp 512–554

  • D’Onofrio A, Crawford JM, Stewart EJ, Kathrin W, Gavrish E, Epstein S, Clardy J, Lewis K (2010) Siderophores from neighboring organisms promote the growth of uncultured bacteria. Chem Biol 17:254–264

    Article  PubMed Central  PubMed  Google Scholar 

  • Dutta TK, Harayama S (2001) Biodegradation of n-alkylcycloalkanes and n-alkylbenzenes via new pathways in Alcanivorax sp. strain MBIC 4326. Appl Environ Microbiol 67:1970–1974

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • El Fantroussi S, Verschuere L, Verstraete W, Top EM (1999) Effect of phenylurea herbicides on soil microbial communities estimated by analysis of 16S rRNA gene fingerprints and community-level physiological profiles. Appl Environ Microbiol 65:982–988

    PubMed Central  PubMed  Google Scholar 

  • Fernández-Álvarez P, Vila J, Garrido-Fernández JM, Grifoll M, Lema JM (2006) Trials of bioremediation on a beach affected by the heavy oil spill of the Prestige. J Hazard Mater B137:1523–1531

    Article  Google Scholar 

  • Fernández-Álvarez P, Vila J, Garrido-Fernández JM, Grifoll M, Feijoo G, Lema JM (2007) Evaluation of biodiesel as bioremediation agent for the treatment of the shore affected by the heavy fuel oil spill of the Prestige. J Hazard Mater 147:914–922

    Article  PubMed  Google Scholar 

  • Franzetti A, Bestetti G, Caredda P, La Colla P, Tamburini E (2007) Surface-active compounds and their role in the access to hydrocarbons in Gordonia strains. FEMS Microbiol Ecol 63:238–248

    Article  PubMed  Google Scholar 

  • Gallego S, Vila J, Nieto JM, Urdiain M, Rosselló-Móra R, Grifoll M (2010) Breoghania corrubedonensis gen. nov., sp. nov., a novel alphaproteobacterium isolated from a Galician beach (NW Spain) after the Prestige fuel oil spill, and emended description of the family Cohaesibacteraceae and the species Cohaesibacter gelatinilyticus. Syst Appl Microbiol 33:316–321

    Article  CAS  PubMed  Google Scholar 

  • García-Junco M, Gómez-Lahoz C, Niqui-Arroyo JL, Ortega-Calvo JJ (2003) Biodegradation- and biosurfactant-enhanced partitioning of polycyclic aromatic hydrocarbons from nonaqueous-phase liquids. Environ Sci Technol 37:2988–2996

    Article  PubMed  Google Scholar 

  • Guo CL, Zhou HW, Wong YS, Tam NFY (2005) Isolation of PAH-degrading bacteria from mangrove sediments and their biodegradation potential. Mar Pollut Bull 51:1054–1061

    Article  CAS  PubMed  Google Scholar 

  • Guo C, Dang Z, Wong Y, Tam NF (2010) Biodegradation ability and dioxygenase genes of PAH-degrading Sphingomonas and Mycobacterium strains isolated from mangrove sediments. Int Biodeter Biodegr 64:419–426

    Article  CAS  Google Scholar 

  • Hall T (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hara A, Syutsubo K, Harayama S (2003) Alcanivorax which prevails in oil-contaminated seawater exhibits broad substrate specificity for alkane degradation. Environ Microbiol 5:746–753

    Article  CAS  PubMed  Google Scholar 

  • Harayama S, Kasai Y, Hara A (2004) Microbial communities in oil-contaminated seawater. Curr Opin Biotechnol 15:205–214

    Article  CAS  PubMed  Google Scholar 

  • Jacques RJS, Okeke BC, Bento FM, Peralba MCR, Camargo FAO (2007) Characterization of a polycyclic aromatic hydrocarbon–degrading microbial consortium from a petrochemical sludge landfarming site. Bioremed J 11:1–11

    Article  CAS  Google Scholar 

  • Jacques RJS, Okeke B, Bento FM, Teixeira AS, Peralba MCR, Camargo FAO (2008) Microbial consortium bioaugmentation of a polycyclic aromatic hydrocarbons contaminated soil. Bioresource Technol 99:2637–2643

    Article  CAS  Google Scholar 

  • Jiménez N, Viñas M, Guiu-Aragonés C, Bayona JM, Albaigés J, Solanas AM (2011) Polyphasic approach or assessing changes in an autochthonous marine bacterial community in the presence of Prestige fuel oil and its biodegradation potential. Appl Microbiol Biotechnol 91:823–834

    Article  PubMed  Google Scholar 

  • Kallimanis A, Karabika E, Mavromatis K, Lapidus A, Labutti KM, Liolios K, Ivanova N, Goodwin L, Woyke T, Velentzas ASD, Perisynakis A, Ouzounis CC, Kyrpides NC, Koukkou AI, Drainas C (2011) Complete genome sequence of Mycobacterium sp. strain (Spyr1) and reclassification to Mycobacterium gilvum spyr1. Stand Genomic Sci 5:144–153

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kanaly RA, Harayama S (2010) Advances in the field of high-molecular-weight polycyclic aromatic hydrocarbon biodegradation by bacteria. Microb Biotechnol 3:136–164

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kasai Y, Kishira H, Harayama S (2002) Bacteria belonging to the genus Cycloclasticus play a primary role in the degradation of aromatic hydrocarbons released in marine environment. Appl Environ Microbiol 68:5625–5633

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim SJ, Kweon O, Freeman JP, Jones RC, Adjei MD, Jhoo JW, Edmonson RD, Cerniglia CE (2006) Molecular cloning and expression of genes encoding a novel dioxygenase involved in low- and high-molecular weight polycyclic aromatic hydrocarbon degradation in Mycobacterium vanbaalenii PYR-1. Appl Environ Microbiol 72:1045–1054

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim SJ, Kweon O, Jones RC, Freeman JP, Edmonson RD, Cerniglia CE (2007) Complete and integrated pyrene degradation pathway in Mycobacterium vanbaalenii PYR-1 based on systems biology. J Bacteriol 189:464–472

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kiyohara H, Nagao K, Yana K (1982) Rapid screen for bacteria degrading water-insoluble solid hydrocarbons on agar plates. Appl Environ Microbiol 43:454–457

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kodama Y, Sutiknowati L, Ueki A, Watanabe K (2008) Thalassospira tepidiphila sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium isolated from seawater. Int J Syst Evol Microbiol 58:711–715

    Article  CAS  PubMed  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–175

    Google Scholar 

  • López Z, Vila J, Minguillón C, Grifoll M (2006) Metabolism of fluoranthene by Mycobacterium sp. AP1. Appl Microbiol Biotechnol 70:747–756

    Article  PubMed  Google Scholar 

  • Macnaughton SJ, Stephen JR, Venosa AD, Davis GA, Chang YJ, White DC (1999) Microbial population changes during bioremediation of an experimental oil spill. Appl Environ Microbiol 65:3566–3574

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maidak BL, Cole JR, Lilburn TG, Parker CT, Saxman PR, Stredwick JM, Garrity GM, Li B, Olsen GJ, Pramanik S, Schmidt TM, Tiedje JM (2000) The RDP (ribosomal database project) continues. Nucleic Acids Res 28:173–174

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maldonado LA, Stachn JEM, Pathom-aree W, Ward AC, Bull AT, Goodfellow M (2005) Diversity of cultivable actinobacteria in geographically widespread marine sediments. Antonie van Leeuwenhoek 87:11–18

    Google Scholar 

  • Mckew BA, Coulon F, Osborn AM, Timmis KN, McGenity TJ (2007) Determining the identity and roles of oil-metabolizing marine bacteria from the Thames Estuary, UK. Environ Microbiol 9:165–176

    Article  CAS  PubMed  Google Scholar 

  • Miller MM, Wasik SP, Huang GL, Shiu WY, Mackay D (1985) Relationships between octanol–water partition coefficient and aqueous solubility. Environ Sci Technol 19:522–529

    Article  CAS  PubMed  Google Scholar 

  • NAS (2003) Oil in the sea III: inputs, fates, and effects. The National Academic Press, Washington, DC

    Google Scholar 

  • Niepceron M, Portet-Koltalo F, Merlin C, Motelay-Massei A, Barray S, Bodilis J (2010) Both Cycloclasticus spp. and Pseudomonas spp. as PAH-degrading bacteria in the Seine estuary (France). FEMS Microbiol Ecol 71:137–147

    Article  CAS  PubMed  Google Scholar 

  • Prince R, Atlas M (2005) Bioremediation of marine oil spills. In: Atlas RM, Philp J (eds) Bioremediation: applied microbial solutions for real-world environmental clean-up. ASM Press, Washington, DC, pp 269–292

    Chapter  Google Scholar 

  • Rivas R, Sánchez-Márquez S, Mateos PF, Martínez-Molina E, Velásquez E (2005) Martelella mediterranea gen. nov., sp. nov., a novel α-proteobacterium isolated from a subterranean saline lake. Int J Syst Evol Microbiol 55:955–959

    Article  CAS  PubMed  Google Scholar 

  • Rowbotham TJ, Cross T (1977) Ecology of Rhodococcus coprophilus and associated actinomycetes in fresh water and agricultural habitats. J Gen Microbiol 100:231–240

    Article  Google Scholar 

  • Samanta SK, Singh OV, Jain RK (2002) Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends Biotechnol 20:243–248

    Article  CAS  PubMed  Google Scholar 

  • Santos HF, Carmo FL, Paes JES, Rosado AS, Peixoto RS (2011) Bioremediation of mangroves impacted by petroleum. Water Air Soil Pollut 216:329–350

    Article  CAS  Google Scholar 

  • Shao Z, Cui Z, Dong C, Lai Q, Chen L (2010) Analysis of a PAH-degrading bacterial population in subsurface sediments on the Mid-Atlantic Ridge. Deep-Sea Res PtI 57:724–730

    Article  CAS  Google Scholar 

  • Silva-Castro GA, Uad I, González-López J, Fandiño CG, Toledo FL, Calvo C (2011) Application of selected microbial consortia combined with inorganic and oleophilic fertilizers to recuperate oil-polluted soil using land farming technology. Clean Technol Environ. doi:10.1007/s10098-011-0439-0

    Google Scholar 

  • Tansel B, Fuentes C, Sánchez M, Predoi K, Acevedo M (2011) Persistence profile of polyaromatic hydrocarbons in shallow and deep Gula waters and sediments: effect of water temperature and sediment-water partitioning characteristics. Mar Pollut Bull 62:2659–2665

    Article  CAS  PubMed  Google Scholar 

  • Teng Y, Luo Y, Sun M, Liu Z, Li Z, Christie P (2010) Effect of bioaugmentation by Paracoccus sp. strain HPD-2 on the soil microbial community and removal of polycyclic aromatic hydrocarbons from an aged contaminated soil. Biores Technol 101:3437–3443

    Article  CAS  Google Scholar 

  • Vila J, Grifoll M (2009) Actions of Mycobacterium sp. strain AP1 on the saturated- and aromatic-hydrocarbon fractions of fuel oil in a marine medium. Appl and Environ Microbiol 75:6232–6239

    Article  CAS  Google Scholar 

  • Vila J, López Z, Sabaté J, Minguillón C, Solanas AM, Grifoll M (2001) Identification of a novel metabolite in the degradation of pyrene by Mycobacterium sp. strain AP1: actions of the isolate on two- and three-ring polycyclic aromatic hydrocarbons. Appl Environ Microbiol 67:5497–5505

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vila J, Nieto JM, Mertens J, Springael D, Grifoll M (2010) Microbial community structure of a heavy fuel oil-degrading marine consortium: linking microbial dynamics with polycyclic aromatic hydrocarbon utilization. FEMS Microbiol Ecol 73:349–362

    CAS  PubMed  Google Scholar 

  • Wang YF, Tam NFY (2011) Microbial community dynamics and biodegradation of polycyclic aromatic hydrocarbons in polluted marine sediments in Hong Kong. Mar Pollut Bull 63:424–430

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Lai Q, Cui Z, Tan T, Shao Z (2008) A pyrene-degrading consortium from deep-sea sediment of the West Pacific and its key member Cycloclasticus sp. P1. Environ Microbiol 10:1948–1963

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Wang W, Lai Q, Shao Z (2010) Gene diversity of CYP153A and AlkB alkane hydroxylases in oil-degrading bacteria isolated from the Atlantic Ocean. Environ Microbiol 12:1230–1242

    Article  CAS  PubMed  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wrenn BA, Venosa AD (1996) Selective enumeration of aromatic and aliphatic hydrocarbon degrading bacteria by a most-probable-number procedure. Can J Microbiol 42:252–258

    Article  CAS  PubMed  Google Scholar 

  • Yakimov MM, Golyshin PN, Lang S, Moore ERB, Abraham WR, Lunsdorf H, Timmis KN (1998) Alcanivorax borkumensis gen. nov., sp. nov., a new, hydrocarbon-degrading and surfactant-producing marine bacterium. Int J Syst Bacteriol 48:339–348

    Article  CAS  PubMed  Google Scholar 

  • Yakimov MM, Denaro R, Genovese M, Cappello S, D’Auria G, Chernikova TN, Timmis KN, Golyshin PN, Giuliano L (2005) Natural microbial diversity in superficial sediments of Milazzo Harbor (Sicily) and community successions during microcosm enrichment with various hydrocarbons. Environ Microbiol 7:1426–1441

    Article  CAS  PubMed  Google Scholar 

  • Yakimov MM, Timmis KN, Golyshin PN (2007) Obligate oil-degrading marine bacteria. Curr Opin Biotechnol 18:257–266

    Article  CAS  PubMed  Google Scholar 

  • Yuan J, Lai Q, Zheng T, Shao Z (2009) Novosphingobium indicum sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium isolated from deep-sea environment. Int J Syst Evol Microbiol 59:2084–2088

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Kallimanis A, Koukou A, Drainas C (2004) Isolation and characterization of novel bacteria degrading polycyclic aromatic hydrocarbons from polluted Greek soils. Appl Microbiol Biotechnol 65:124–131

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was funded by grants from the Spanish Ministry of Education and Science (VEM2004-08-556, CGL2007-64199/BOS, CGL2010-22068-C02-02), Fonds voor Wetenschappelijk Onderzoek-Vlaanderen (FWO-Vlaanderen) project G.0371.06, EU project BACSIN KBBE-2007-3.3-02, KULeuven OT project OT10/03 and by a fellowship (to S. G.) from FPU Programme. M. G. and J. V. are members of the Xarxa de Referència d’R + D + I (XRB) of the Generalitat de Catalunya.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Grifoll.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2336 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gallego, S., Vila, J., Tauler, M. et al. Community structure and PAH ring-hydroxylating dioxygenase genes of a marine pyrene-degrading microbial consortium. Biodegradation 25, 543–556 (2014). https://doi.org/10.1007/s10532-013-9680-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-013-9680-z

Keywords

Navigation