Skip to main content
Log in

Application of recombinant Pediococcus acidilactici BD16 (fcs +/ech +) for bioconversion of agrowaste to vanillin

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Biotechnological production of vanillin is gaining momentum as the natural synthesis of vanillin that is very expensive. Ferulic acid (FA), a costly compound, is used as the substrate to produce vanillin biotechnologically and the making process is still expensive. Therefore, this study investigated the practical use of an agrobiomass waste, rice bran, and provides the first evidence of a cost-effective production of vanillin within 24 h of incubation using recombinant Pediococcus acidilactici BD16 (fcs +/ech +). Introduction of two genes encoding feruloyl CoA synthetase and enoyl CoA hydratase into the native strain increased vanillin yield to 4.01 g L−1. Bioconversion was monitored through the transformation of phenolic compounds. A hypothetical metabolic pathway of rice bran during the vanillin bioconversion was proposed with the inserted pathway from ferulic acid to vanillin and compared with that of other metabolic engineered strains. These results could be a gateway of using recombinant lactic acid bacteria for industrial production of vanillin from agricultural waste.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Achterholt S, Priefert H, Steinbüchel A (2000) Identification of Amycolatopsis sp. strain HR167 genes, involved in the bioconversion of ferulic acid to vanillin. Appl Microbiol Biotechnol 54:799–807

    Article  CAS  PubMed  Google Scholar 

  • Barbosa ES, Perrone D, Amaral VAL, Ferriera LSG (2008) Vanillin production by Phanerochaete chrysosporium grown on green coconut agro-industrial husk in solid state fermentation. Bio Res 3(4):1042–1050

    Google Scholar 

  • Barghini P, Gioia Di D, Fava F, Ruzzi M (2007) Vanillin production using metabolically engineered Escherichia coli under non-growing conditions. Microb Cell Factories 6(13). doi:10.1186/1475-2859-6-13

  • Bloem A, Bertrand A, Lonvaud-Funel A, Revel de G (2007) Vanillin production from simple phenols by wine-associated lactic acid bacteria. Lett Appl Microbiol 44(1):62–67

    Article  CAS  PubMed  Google Scholar 

  • Brochado AR, Matos C, Moller BL, Hansen J, Mortensen UH, Patil KR (2010) Improved vanillin production in baker’s yeast through in silico design. Microb Cell Fact 9:84

  • Chakraborty D, Gupta G, Kaur B (2016) Metabolic engineering of E. coli top 10 for production of vanillin through FA catabolic pathway and bioprocess optimization using RSM. Protein Expr Purif 128:123–133

    Article  CAS  PubMed  Google Scholar 

  • Cicero A F G and Derosa G (2005) Rice bran and its main components: potential role in the management of coronary risk factors. Curr Top Nutraceutical Res 3(1): 29–46

  • Converti A, Aliakbarian B, Dominguez JM, Bustos VG, Perego P (2010) Microbial production of biovanillin. Braz J Microbiol 41(3):519–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Gioia DD, Luziatelli F, Andrea N, Ficca AG, Fava F, Ruzzi M (2011) Metabolic engineering of Pseudomonas fluorescens for the production of vanillin from ferulic acid. J Biotechnol 156(4):309–316

    Article  CAS  PubMed  Google Scholar 

  • Eugene SW (1958) Vanillin purification. US patent no: 3049566A. Retrive from http://www.google.co.in/patents/US3049566

  • Hansen EH, Moller BL, Kock GR (2009) De novo biosynthesis of vanillin in fission yeast Schizosaccharomyces pombe and baker’s yeast Saccharomyces cerevisiae. Appl Environ Microbiol 75:2765–2774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasana RC, Sharma UK, Sharma N, Sinha AK (2007) Isolation and identification of a novel strain of Pseudomonas chlororaphis capable of transforming isoeugenol to vanillin. Curr Microbiol 54:457–561

    Article  CAS  PubMed  Google Scholar 

  • Kaur B, Chakraborty D (2012) Biotechnological and molecular approaches for vanillin production: a review. Appl Biochem Biotechnol 169(8):1353–1372

    Google Scholar 

  • Kaur B, Chakraborty D (2013) Statistical media and process optimization for biotransformation of rice bran to vanillin using Pediococcus acidilactici. Ind J Exp Biol 51:935–943

    CAS  Google Scholar 

  • Kaur B, Chakraborty D, Kaur G, Kaur G (2013a) Biotransformation of rice bran to ferulic acid by Pediococcal isolates. Appl Biochem Biotechnol 170(4):854–867

    Article  CAS  PubMed  Google Scholar 

  • Kaur B, Chakraborty D, Kumar B (2013b) Phenolic biotransformations during conversion of ferulic acid to vanillin by lactic acid bacteria. BioMed Res Int Article ID 590359, 6 pages.

  • Kaur B, Chakraborty D, Kumar B (2014) Metabolic engineering of Pediococcus acidilactici BD16 for production of vanillin through ferulic acid catabolic pathway and process optimization using response surface methodology. Appl Microbiol Biotechnol 98(20):8539–8551

    Article  CAS  PubMed  Google Scholar 

  • Landete M, Rodriguez H, Curiel JA, De Las Rivas B, Mancheno JM Munoz R (2010) Gene cloning, expression, and characterization of phenolic acid decarboxylase from Lactobacillus brevis RM84. J Indus Microbiol Biotechnol 37(6) 617–624

  • Lee EG, Yoon SH, Das A, Lee SH, Li C, Kim JY, Choi MS, Oh DK, Kim SW (2009) Directing vanillin production from ferulic acid by increased acetyl-CoA consumption in recombinant Escherichia coli. Biotechnol Bioeng 102(1):200–208

    Article  CAS  PubMed  Google Scholar 

  • Lesage-Meessen L, Lomascolo A, Bonnin E, Thibault JF, Buleon A, Roller M, Asther M, Record E, Ceccaldi BC, Asther M (2002) A biotechnological process involving filamentous fungi to produce natural crystalline vanillin from maize bran. Appl Biochem Biotechnol 102-103:141–153

    Article  CAS  PubMed  Google Scholar 

  • Lesage-Meessen L, Stentelaire C, Lomascolo A, Couteau D, Mi A, Moukha S, Record E, Sigoillot JC, Asther M (1999) Fungal transformation of FA from sugar beet pulp to natural vanillin. J Sci Food Agric 79:487–490

    Article  CAS  Google Scholar 

  • Liu Z, Rochfort S (2013) A fast liquid chromatography mass spectrometry (LCMS) method for quantification of major polar metabolites in plants. J Chromatography 912:8–15

    Article  CAS  Google Scholar 

  • Narbad A, Gasson MJ (1998) Metabolism of ferulic acid via vanillin using a novel CoA dependent pathway in a newly isolated strain of Pseudomonas fluorescens. Microbiol 144(5):1397–1405

    Article  CAS  Google Scholar 

  • Odoux E, Grisoni M (2010) Vanilla. In: Medicinal and aromatic plants: industrial profiles (Ed.)^(Eds.), p. 387. Taylor and Francis Group.

  • Overhage J, Priefert H, Rabenhorst J, Steinbüchel A (1999) Biotransformation of eugenol to vanillin by a mutant of Pseudomonas sp. strain HR199 constructed by disruption of the vanillin dehydrogenase (vdh) gene. Appl Microbiol Biotechnol 52(6):820–828

    Article  CAS  PubMed  Google Scholar 

  • Overhage J, Priefert H, Rabenhorst J, Steinbüchel A (2000) Construction of production strains for producing substituted phenols by specifically inactivating genes of the eugenol and ferulic acid catabolism. Patent application no.WO0026355.

  • Overhage J, Steinbüchel A, Priefert H (2003) Highly efficient biotransformation of eugenol to ferulic acid and further conversion to vanillin in recombinant strains of Escherichia coli. Appl Environ Microbiol 69(11):6569–6576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Overhage J, Steinbüchel A, Priefert H (2006) Harnessing eugenol as a substrate for production of aromatic compounds with recombinant strains of Amycolatopsis sp. HR167. J Biotechnol 125(3):369–376

    Article  CAS  PubMed  Google Scholar 

  • Plaggenborg R, Overhage J, Steinbüchel A, Priefert H (2003) Functional analyses of genes involved in the metabolism of ferulic acid in Pseudomonas putida KT2440. Appl Microbiol Biotechnol 61:528–535

    Article  CAS  PubMed  Google Scholar 

  • Plaggenborg R, Overhage J, Loos A, Archer JAC, Lessard P, Sinskey AJ, Steinbüchel A, Priefert H (2006) Potential of Rhodococcus strains for biotechnological vanillin production from ferulic acid and eugenol. Appl Microbiol Biotechnol 72(4):745–755

    Article  CAS  PubMed  Google Scholar 

  • Ruzzi M, Luziatelli F, Matteo PD (2008) Genetic engineering of Escherichia coli to enhance biological production of vanillin from ferulic acid. Bull UASVM Animal Sci Biotechnol 65 (1–2).

  • Salleh NHM, Daud MZM, Arbain D, Ahmad MS (2011) Aromatic benzaldehyde from Oryzae sativa, International conference on food engineering and biotechnology, IPCBEE, 9: 141–144.

  • Song JW, Lee EG, Yoon SH, Lee SH, Lee JM, Lee SG, Kim SW (2009) Vanillin production enhanced by substrate channeling in recombinant E. coli. SIM annual meeting and exhibition. Indus. Microbiol. Biotechnol. 125. Poster no 125 (session 1), SIM annual meeting and exhibition Indus. Microbiol Biotechnol Westin harbor castle, Toronto ON, Canada.

  • Yang W, Tang H, Ni J, Wu Q, Hua D, Tao F, Xu P (2013) Characterization of two Streptomyces enzymes that convert ferulic acid to vanillin. PLoS One 8(6):e67339. doi:10.1371/journal.pone.0067339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon SH, Lee EG, Das A, Lee SH, Li C, Ryu HK, Choi MS, Seo WT (2007) Enhanced vanillin production from recombinant E. coli using NTG mutagenesis and adsorbent resin. Biotechnol Prog 23(5):1143–1148

    PubMed  Google Scholar 

  • Yoon SH, Cui L, Lee YM, Lee SH, Kim SH, Choi MS, Seo WT, Yang JK, Kim JY, Kim SW (2005a) Production of vanillin from ferulic acid using recombinant strains of Escherichia coli. Biotechnol Bioprocess Eng 10:378–384

    Article  CAS  Google Scholar 

  • Yoon SH, Li C, Kim JE, Lee SH, Yoon JY, Choi MS, Seo WT, Yang JK, Kim JY, Kim SW (2005b) Production of vanillin by metabolically engineered Escherichia coli. Biotechnol Lett 27(22):1829–1832

    Article  CAS  PubMed  Google Scholar 

  • Zheng L, Zheng P, Sun Z, Wang J, Guo X (2007) Production of vanillin from waste residue of rice bran oil by Aspergillus niger and Pycnoporus cinnabarinus. Bioresour Technol 98:1115–1119

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors acknowledge University Grants Commission, New Delhi, India for providing UGC major research project to Dr. Baljinder Kaur and meritorious scholarship to Mr. Debkumar Chakraborty and Masafumi Noda for providing cloning vector pLES003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baljinder Kaur.

Ethics declarations

All the authors mutually agree to submit the manuscript to Applied Microbiology and Biotechnology.

Funding

The authors acknowledge the UGC major research project entitled “Metabolic engineering of a lactic acid bacterial isolate for biotransformation of ferulic acid to vanillin” to Dr. Baljinder Kaur (F.39-271/2010(SR)).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

.

ESM 1

(PDF 1072 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, D., Selvam, A., Kaur, B. et al. Application of recombinant Pediococcus acidilactici BD16 (fcs +/ech +) for bioconversion of agrowaste to vanillin. Appl Microbiol Biotechnol 101, 5615–5626 (2017). https://doi.org/10.1007/s00253-017-8283-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-017-8283-8

Keywords

Navigation