Skip to main content
Log in

Metabolic engineering of Pediococcus acidilactici BD16 for production of vanillin through ferulic acid catabolic pathway and process optimization using response surface methodology

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Occurrence of feruloyl-CoA synthetase (fcs) and enoyl-CoA hydratase (ech) genes responsible for the bioconversion of ferulic acid to vanillin have been reported and characterized from Amycolatopsis sp., Streptomyces sp., and Pseudomonas sp. Attempts have been made to express these genes in Escherichia coli DH5α, E. coli JM109, and Pseudomonas fluorescens. However, none of the lactic acid bacteria strain having GRAS status was previously proposed for heterologous expression of fcs and ech genes for production of vanillin through biotechnological process. Present study reports heterologous expression of vanillin synthetic gene cassette bearing fcs and ech genes in a dairy isolate Pediococcus acidilactici BD16. After metabolic engineering, statistical optimization of process parameters that influence ferulic acid to vanillin biotransformation in the recombinant strain was carried out using central composite design of response surface methodology. After scale-up of the process, 3.14 mM vanillin was recovered from 1.08 mM ferulic acid per milligram of recombinant cell biomass within 20 min of biotransformation. From LCMS-ESI spectral analysis, a metabolic pathway of phenolic biotransformations was predicted in the recombinant P. acidilactici BD16 (fcs +/ech +).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Achterholt S, Priefert H, Steinbüchel A (2000) Identification of Amycolatopsis sp. strain HR167 genes, involved in the bioconversion of ferulic acid to vanillin. Appl Microbiol Biotechnol 54:799–807

    Article  PubMed  CAS  Google Scholar 

  • Barbosa ES, Perrone D, Amaral VAL, Ferriera LSG (2008) Vanillin production by Phanerochaete chrysosporium grown on green coconut agro-industrial husk in solid state fermentation. Bioresources 3(4):1042–1050

    Google Scholar 

  • Barghini P, Di Gioia D, Fava F, Ruzzi M (2007) Vanillin production using metabolically engineered Escherichia coli under non-growing conditions. Microb Cell Factories 6:13. doi:10.1186/1475-2859-6-13

    Article  Google Scholar 

  • Bloem A, Bertrand A, Lonvaud-Funel A, de Revel G (2007) Vanillin production from simple phenols by wine-associated lactic acid bacteria. Lett Appl Microbiol 44(1):62–67

    Article  PubMed  CAS  Google Scholar 

  • Caldwell SL, Mahon DJM, Oberg CJ, Broadbent JR (1996) Development and characterization of lactose-positive Pediococcus Species for milk fermentation. Appl Environ Microbiol 62(3):936–941

    PubMed  CAS  PubMed Central  Google Scholar 

  • Converti A, Aliakbarian B, Dominguez JM, Bustos Vázquez G, Perego P (2010) Microbial production of biovanillin. Braz J Microbiol 41(3):519–530

  • Davis JR, Goodwin LA, Woyke T, Teshima H, Bruce D, Detter C, Tapia R, Han S, Han J, Pitluck S, Nolan M, Mikhailova N, Land ML, Sello JK (2012) Genome sequence of Amycolatopsis sp. strain ATCC 39116, a plant biomass-degrading actinomycete. J Bacteriol 194:2396–2397

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • De Las Rivas B, Rodriguez H, Curiel JA, Landete JM, Munoz R (2009) Molecular screening of wine lactic acid bacteria degrading hydroxycinnamic acids. J Agric Food Chem 57:490–494

    Article  Google Scholar 

  • del Martinez-Cuesta MC, Payne J, Hanniffy SB, Gasson MJ, Narbad A (2005) Functional analysis of the vanillin pathway in a vdh-negative mutant strain of Pseudomonas fluorescens AN103. Enzym Microb Technol 37(1):131–138

    Article  CAS  Google Scholar 

  • Di Gioia D, Luziatelli F, Andrea N, Ficca AG, Fava F, Ruzzi M (2011) Metabolic engineering of Pseudomonas fluorescens for the production of vanillin from ferulic acid. J Biotechnol 156(4):309–316

    Article  Google Scholar 

  • Gasson MJ, Kitamura Y, McLauchlan WR, Narbad A, Parr AJ, Parsons EL, Payne J, Rhodes MJ, Walton NJ (1998) Metabolism of ferulic acid to vanillin. A bacterial gene of the enoyl-SCoA hydratase/isomerase superfamily encodes an enzyme for the hydration and cleavage of a hydroxycinnamic acid SCoA thioester. J Biol Chem 237:4163–4170

    Article  Google Scholar 

  • Hua D, Ma C, Lin S, Song L, Lin S, Zhang Z, Deng Z, Xu P (2006) Enhanced vanillin production from ferulic acid using adsorbent resin. Appl Microbiol Biotechnol 74(4):783–790

    Article  PubMed  Google Scholar 

  • Kaur B, Chakraborty D (2012) Biotechnological and molecular approaches for vanillin production: a review. Appl Biochem Biotechnol 169(8):1353–1372

    Google Scholar 

  • Kaur B, Chakraborty D (2013) Statistical media and process optimization for biotransformation of rice bran to vanillin using Pediococcus acidilactici. Ind J Exp Biol 51:935–943

    CAS  Google Scholar 

  • Kaur B, Chakraborty D, Kaur G, Kaur G (2013a) Biotransformation of rice bran to ferulic acid by Pediococcal isolates. Appl Biochem Biotechnol 170(4):854–867

    Article  PubMed  CAS  Google Scholar 

  • Kaur B, Chakraborty D, Kumar B (2013b) Phenolic biotransformations during conversion of ferulic acid to vanillin by lactic acid bacteria. BioMed Res Int Article ID 590359, 6 pages

  • Lee EG, Yoon SH, Das A, Lee SH, Li C, Kim JY, Choi MS, Oh DK, Kim SW (2009) Directing vanillin production from ferulic acid by increased acetyl-CoA consumption in recombinant Escherichia coli. Biotechnol Bioeng 102(1):200–208

    Article  PubMed  CAS  Google Scholar 

  • Luziatelli F, Ruzzi M (2008) Genetic engineering of Escherichia Coli to enhance biological production of vanillin from ferulic acid. Bull UASVM Anim Sci Biotechnol 65:4–8

    Google Scholar 

  • Masai E, Harada K, Kitayama H, Peng X, Katayama Y, Fukuda M (2002) Cloning and characterization of the ferulic acid catabolic genes of Sphingomonas paucimobilis SYK-6. Appl Environ Microbiol 68(9):4416–4424

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Muheim A, Lerch K (1999) Towards a high-yield bioconversion of ferulic acid to vanillin. Appl Microbiol Biotechnol 51:456–461

    Article  CAS  Google Scholar 

  • Muheim A, Muller B, Munch T, Wetli M (2001) Microbiological process for producing vanillin. U.S. patent 6,235,507 B1

  • Narbad A, Gasson MJ (1998) Metabolism of ferulic acid via vanillin using a novel CoA dependent pathway in a newly isolated strain of Pseudomonas fluorescens. Microbiology 144(5):1397–1405

    Article  PubMed  CAS  Google Scholar 

  • Overhage J, Priefert H, Steinbüchel A (1999a) Biochemical and genetic analyses of ferulic acid catabolism in Pseudomonas sp. strain HR199. Appl Environ Microbiol 65:4837–4847

    PubMed  CAS  PubMed Central  Google Scholar 

  • Overhage J, Priefert H, Rabenhorst J, Steinbüchel A (1999b) Biotransformation of eugenol to vanillin by a mutant of Pseudomonas sp. strain HR199 constructed by disruption of the vanillin dehydrogenase (vdh) gene. Appl Microbiol Biotechnol 52(6):820–828

    Article  PubMed  CAS  Google Scholar 

  • Overhage J, Steinbüchel A, Priefert H (2003) Highly efficient biotransformation of Eugenol to ferulic acid and further conversion to vanillin in recombinant strains of Escherichia coli. Appl Environ Microbiol 69(11):6569–6576

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Overhage J, Steinbüchel A, Priefert H (2006) Harnessing eugenol as a substrate for production of aromatic compounds with recombinant strains of Amycolatopsis sp. HR167. J Biotechnol 125(3):369–376

    Article  PubMed  CAS  Google Scholar 

  • Plaggenborg R, Overhage J, Steinbüchel A, Priefert H (2003) Functional analyses of genes involved in the metabolism of ferulic acid in Pseudomonas putida KT2440. Appl Microbiol Biotechnol 61:528–535

    Article  PubMed  CAS  Google Scholar 

  • Plaggenborg R, Overhage J, Loos A, Archer JAC, Lessard P, Sinskey AJ, Steinbüchel A, Priefert H (2006) Potential of Rhodococcus strains for biotechnological vanillin production from ferulic acid and eugenol. Appl Microbiol Biotechnol 72(4):745–755

    Article  PubMed  CAS  Google Scholar 

  • Ruzzi M, Luziatelli F, Matteo PD (2008) Genetic engineering of Escherichia coli to enhance biological production of vanillin from ferulic acid. Bulletin UASVM. Anim Sci Biotechnol 65(1–2)

  • Song JW, Lee EG, Yoon SH, Lee SH, Lee JM, Lee SG, Kim SW (2009) Vanillin production enhanced by substrate channeling in recombinant E. coli. SIM annual meeting and exhibition. J Ind Microbiol Biotechnol 125

  • Wada T, Noda M, Kashiwabara F, Jeon HJ, Shirakawa A, Yabu H, Matoba Y, Kumagai T, Sugiyama M (2009) Characterization of four plasmids harboured in a Lactobacillus brevis strain encoding a novel bacteriocin, brevicin 925A, and construction of a shuttle vector for lactic acid bacteria and Escherichia coli. Microbiology 155(Pt 5):1726–1737

    Article  PubMed  CAS  Google Scholar 

  • Yang W, Tang H, Jun N, Wu Q, Hua D, Tao F, Xu P (2013) Characterization of two Streptomyces enzymes that convert ferulic acid to vanillin. PLoS ONE 8(6):e67339. doi:10.1371/journal.pone.0067339

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yoon SH, Cui L, Lee YM, Lee SH, Kim SH, Choi MS, Seo WT, Yang JK, Kim SW (2005a) Production of vanillin from ferulic acid using recombinant strains of Escherichia coli. Biotechnol Bioprocess Eng 10:378–384

    Article  CAS  Google Scholar 

  • Yoon SH, Li C, Kim JE, Lee SH, Yoon JY, Choi MS, Seo WT, Yang JK, Kim JY, Kim SW (2005b) Production of vanillin by metabolically engineered Escherichia coli. Biotechnol Lett 27(22):1829–1832

    Article  PubMed  CAS  Google Scholar 

  • Yoon SH, Lee EG, Das A, Lee SH, Li C, Ryu HK, Choi MS, Seo WT (2007) Enhanced vanillin production from recombinant E.coli using NTG mutagenesis and adsorbent resin. Biotechnol Prog 23(5):1143–1148

    PubMed  Google Scholar 

Download references

Acknowledgments

Authors acknowledge Masafumi Noda, Assistant Professor, Hiroshima University, Japan, for providing shuttle vector pLES003. Financial assistance is provided by UGC, New Delhi, India as a major research project entitled “Metabolic engineering of LAB isolate for biotransformation of ferulic acid to vanillin” to Dr. Baljinder Kaur and as a meritorious BSR fellowship to Mr. Debkumar Chakraborty.

Conflict of interest

We do not have any conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baljinder Kaur.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 802 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, B., Chakraborty, D. & Kumar, B. Metabolic engineering of Pediococcus acidilactici BD16 for production of vanillin through ferulic acid catabolic pathway and process optimization using response surface methodology. Appl Microbiol Biotechnol 98, 8539–8551 (2014). https://doi.org/10.1007/s00253-014-5950-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5950-x

Keywords

Navigation