Skip to main content
Log in

Improvement of enzyme activity of β-1,3-1,4-glucanase from Paenibacillus sp. X4 by error-prone PCR and structural insights of mutated residues

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

β-1,3-1,4-Glucanase (BGlc8H) from Paenibacillus sp. X4 was mutated by error-prone PCR or truncated using termination primers to improve its enzyme properties. The crystal structure of BGlc8H was determined at a resolution of 1.8 Å to study the possible roles of mutated residues and truncated regions of the enzyme. In mutation experiments, three clones of EP 2-6, 2-10, and 5-28 were finally selected that exhibited higher specific activities than the wild type when measured using their crude extracts. Enzyme variants of BG2-6, BG2-10, and BG5-28 were mutated at two, two, and six amino acid residues, respectively. These enzymes were purified homogeneously by Hi-Trap Q and CHT-II chromatography. Specific activity of BG5-28 was 2.11-fold higher than that of wild-type BGwt, whereas those of BG2-6 and BG2-10 were 0.93- and 1.19-fold that of the wild type, respectively. The optimum pH values and temperatures of the variants were nearly the same as those of BGwt (pH 5.0 and 40 °C, respectively). However, the half-life of the enzyme activity and catalytic efficiency (k cat/K m) of BG5-28 were 1.92- and 2.12-fold greater than those of BGwt at 40 °C, respectively. The catalytic efficiency of BG5-28 increased to 3.09-fold that of BGwt at 60 °C. These increases in the thermostability and catalytic efficiency of BG5-28 might be useful for the hydrolysis of β-glucans to produce fermentable sugars. Of the six mutated residues of BG5-28, five residues were present in mature BGlc8H protein, and two of them were located in the core scaffold of BGlc8H and the remaining three residues were in the substrate-binding pocket forming loop regions. In truncation experiments, three forms of C-terminal truncated BGlc8H were made, which comprised 360, 286, and 215 amino acid residues instead of the 409 residues of the wild type. No enzyme activity was observed for these truncated enzymes, suggesting the complete scaffold of the α66-double-barrel structure is essential for enzyme activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adachi W, Sakihama Y, Shimizu S, Sunami T, Fukazawa T, Suzuki M, Yatsunami R, Nakamura S, Takénaka A (2004) Crystal structure of family GH-8 chitosanase with subclass II specificity from Bacillus sp. K17. J Mol Biol 343:785–795. doi:10.1016/j.jmb.2004.08.028

    Article  CAS  PubMed  Google Scholar 

  • Anbar M, Gul O, Lamed R, Sezerman UO, Bayer EA (2012) Improved thermostability of Clostridium thermocellum endoglucanase Cel8A by using consensus-guided mutagenesis. Appl Environ Microbiol 78:3458–3464. doi:10.1128/AEM.07985-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anbar M, Lamed R, Bayer EA (2010) Thermostability enhancement of Clostridium thermocellum cellulosomal endoglucanase Cel8A by a single glycine substitution. ChemCatChem 2:997–1003. doi:10.1002/cctc.201000112

    Article  CAS  Google Scholar 

  • Bielecki S, Galas E (1991) Microbial β-glucanase different from cellulases. Crit Rev Biotechnol 10:275–305. doi:10.3109/07388559109038212

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Cho KM, Math RK, Hong SY, Asraful Islam SM, Kim JO, Hong SJ, Kim H, Yun HD (2008) Changes in the activity of the multifunctional beta-glycosyl hydrolase (Cel44C-Man26A) from Paenibacillus polymyxa by removal of the C-terminal region to minimum size. Biotechnol Lett 30:1061–1068. doi:10.1007/s10529-008-9640-6

    Article  CAS  PubMed  Google Scholar 

  • Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66(Pt 4):486–501. doi:10.1107/S0907444910007493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furtado GP, Ribeiro LF, Santos CR, Tonoli CC, Souza AR, Oliveira RR, Murakami MT, Ward RJ (2011) Biochemical and structural characterization of a β-1,3–1,4-glucanase from Bacillus subtilis 168. Process Biochem 46:1202–1206. doi:10.1016/j.procbio.2011.01.037

    Article  CAS  Google Scholar 

  • Gouet P, Courcelle E, Stuart DI, Métoz F (1999) ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics 15:305–308

    Article  CAS  PubMed  Google Scholar 

  • Guérin DM, Lascombe MB, Costabel M, Souchon H, Lamzin V, Béguin P, Alzari PM (2002) Atomic (0.94 A) resolution structure of an inverting glycosidase in complex with substrate. J Mol Biol 316:1061–1069. doi:10.1006/jmbi.2001.5404

    Article  PubMed  Google Scholar 

  • Hrmova M, Fincher GB (2001) Structure-function relationships of β-D-glucan endo- and exohydrolases from higher plants. Plant Mol Biol 47:73–91

    Article  CAS  PubMed  Google Scholar 

  • Jeong YS, Na HB, Kim SK, Kim YH, Kwon EJ, Kim J, Yun HD, Lee JK, Kim H (2012) Characterization of Xyn10J, a novel family 10 xylanase from a compost metagenomic library. Appl Biochem Biotechnol 166:1328–1339. doi:10.1007/s12010-011-9520-8

    Article  CAS  PubMed  Google Scholar 

  • Jia H, Li Y, Liu Y, Yan Q, Yang S, Jiang Z (2012) Engineering a thermostable β-1,3-1,4-glucanase from Paecilomyces thermophila to improve catalytic efficiency at acidic pH. J Biotechnol 159:50–55. doi:10.1016/j.jbiotec.2012.02.007

    Article  CAS  PubMed  Google Scholar 

  • Kim SA, Cheng KJ, Liu JH (2002) A variant of Orpinomyces joyonii 1,3-1,4-beta-glucanase with increased thermal stability obtained by random mutagenesis and screening. Biosci Biotechnol Biochem 66:171–174

    Article  CAS  PubMed  Google Scholar 

  • Krissinel E (2012) Enhanced fold recognition using efficient short fragment clustering. J Mol Biochem 1:76–85

    PubMed  PubMed Central  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the sterochemical quality of protein structures. J Appl Crystallogr 26:283–291. doi:10.1107/S0021889892009944

    Article  CAS  Google Scholar 

  • Li S, Sauer WC, Huang SX, Gabert VI (1996) Effect of β-glucanase supplementation to hulless barley- or wheat-soybean meal diets on the digestibilities of energy, protein, beta-glucans and amino acid in young pigs. J Anim Sci 74:1649–1656

    Article  CAS  PubMed  Google Scholar 

  • Liang C, Fioroni M, Rodríguez-Ropero F, Xue Y, Schwaneberg U, Ma Y (2011) Directed evolution of a thermophilic endoglucanase (Cel5A) into highly active Cel5A variants with an expanded temperature profile. J Biotechnol 154:46–53. doi:10.1016/j.jbiotec.2011.03.025

    Article  CAS  PubMed  Google Scholar 

  • Lim WJ, Hong SY, An CL, Cho KM, Choi BR, Kim YK, An JM, Kang JM, Lee SM, Cho SJ, Kim H, Yun HD (2005) Construction of minimum size cellulase (Cel5Z) from Pectobacterium chrysanthemi PY35 by removal of the C-terminal region. Appl Microbiol Biotechnol 68:46–52. doi:10.1007/s00253-004-1880-3

    Article  CAS  PubMed  Google Scholar 

  • Lin L, Fu C, Huang W (2016) Improving the activity of the endoglucanase, Cel8M from Escherichia coli by error-prone PCR. Enzym Microb Technol 86:52–58

    Article  CAS  Google Scholar 

  • Lin L, Meng X, Liu P, Hong Y, Wu G, Huang X, Li C, Dong J, Xiao L, Liu Z (2009) Improved catalytic efficiency of endo-beta-1,4-glucanase from Bacillus subtilis BME-15 by directed evolution. Appl Microbiol Biotechnol 82:671–679. doi:10.1016/j.enzmictec.2016.01.011

    Article  CAS  PubMed  Google Scholar 

  • Mao S, Gao P, Lu Z, Lu F, Zhang C, Zhao H, Bie X (2016) Engineering of a thermostable β-1,3-1,4-glucanase from Bacillus altitudinis YC-9 to improve its catalytic efficiency. J Sci Food Agric 96:109–115. doi:10.1002/jsfa.7066

    Article  CAS  PubMed  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for the determination of reducing sugar. Anal Chem 31:428–436. doi:10.1021/ac60147a030

    Google Scholar 

  • Murshudov GN, Skubák P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, Winn MD, Long F, Vagin AA (2011) REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr 67(Pt 4):355–367. doi:10.1107/S0907444911001314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Na HB, Jung WK, Jeong YS, Kim HJ, Kim SK, Kim J, Yun HD, Lee JK, Kim H (2015) Characterization of a GH family 8 β-1,3-1,4-glucanase with distinctive broad substrate specificity from Paenibacillus sp. X4. Biotechnol Lett 37:643–655 . doi:10.1007/s10529-014-1724-x Erratum 37:657–8

    Article  CAS  PubMed  Google Scholar 

  • Niu D, Zhou XX, Yuan TY, Lin ZW, Ruan H, Li WF (2010) Effect of the C-terminal domains and terminal residues of catalytic domain on enzymatic activity and thermostability of lichenase from Clostridium thermocellum. Biotechnol Lett 32:963–967. doi:10.1007/s10529-010-0241-9

    Article  CAS  PubMed  Google Scholar 

  • Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276:307–326. doi:10.1016/S0076-6879(97)76066-X

    Article  CAS  Google Scholar 

  • Park SR, Cho SJ, Kim MK, Ryu SK, Lim WJ, An CL, Hong SY, Kim JH, Kim H, Yun HD (2002) Activity enhancement of Cel5Z from Pectobacterium chrysanthemi PY35 by removing C-terminal region. Biochem Biophys Res Commun 291:425–430. doi:10.1006/bbrc.2002.6437

    Article  CAS  PubMed  Google Scholar 

  • Pei H, Guo X, Yang W, Lv J, Chen Y, Cao Y (2015) Directed evolution of a β-1,3-1,4-glucanase from Bacillus subtilis MA139 for improving thermal stability and other characteristics. J Basic Microbiol 55:869–878. doi:10.1002/jobm.201400664

    Article  CAS  PubMed  Google Scholar 

  • Planas A (2000) Bacterial 1,3-1,4-β-glucanases: structure, function and protein engineering. Biochim Biophys Acta 1543:361–382

    Article  CAS  PubMed  Google Scholar 

  • Qiao J, Dong B, Li Y, Zhang B, Cao Y (2009) Cloning of a β-1,3-1,4-glucanase gene from Bacillus subtilis MA139 and its functional expression in Escherichia coli. Appl Biochem Biotechnol 152:334–342. doi:10.1007/s12010-008-8193-4

    Article  CAS  PubMed  Google Scholar 

  • Schrodinger, L (2010) The PyMOL molecular graphics system, Version 1.3r1

  • Shin ES, Yang MJ, Jung KH, Kwon EJ, Jung JS, Park SK, Kim J, Yun HD, Kim H (2002) Influence of the transposition of the thermostabilizing domain of Clostridium thermocellum xylanase (XynX) on xylan binding and thermostabilization. Appl Environ Microbiol 68:3496–3501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Telke AA, Zhuang N, Ghatge SS, Lee SH, Ali Shah A, Khan H, Um Y, Shin HD, Chung YR, Lee KH, Kim SW (2013) Engineering of family-5 glycoside hydrolase (Cel5A) from an uncultured bacterium for efficient hydrolysis of cellulosic substrates. PLoS One 8:e65727. doi:10.1371/journal.pone.0065727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX woindows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Yuan H, Wang J, Yu Z (2009) Truncation of the cellulose binding domain improved thermal stability of endo-beta-1,4-glucanase from Bacillus subtilis JA18. Bioresour Technol 100:345–349. doi:10.1016/j.biortech.2008.06.001

    Article  CAS  PubMed  Google Scholar 

  • Wen TN, Chen JL, Lee SH, Yang NS, Shyur LF (2005) A truncated Fibrobacter succinogenes 1,3-1,4-beta-d-glucanase with improved enzymatic activity and thermotolerance. Biochemistry 44:9197–9205

    Article  CAS  PubMed  Google Scholar 

  • Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, Keegan RM, Krissinel EB, Leslie AG, McCoy A, McNicholas SJ, Murshudov GN, Pannu NS, Potterton EA, Powell HR, Read RJ, Vagin A, Wilson KS (2011) Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr 67(Pt 4):235–242. doi:10.1107/S0907444910045749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woodward JR, Fincher GB, Stone BA (1983) Water-soluble (1 → 3), (1 → 4)-β-D-glucans from barley (Hordeum vulgare) endosperm. I Physicochemical properties Carbohydr polym 3:207–225. doi:10.1016/0144-8617(83)90004-8

    Article  CAS  Google Scholar 

  • Xu T, Zhu T, Li S (2016) β-1,3-1,4-glucanase gene from Bacillus velezensis ZJ20 exerts antifungal effect on plant pathogenic fungi. World J Microbiol Biotechnol 32:26. doi:10.1007/s11274-015-1985-0

    Article  PubMed  Google Scholar 

  • Zhang XZ, Zhang YHP (2011) Simple, fast and high-efficiency transformation system for directed evolution of cellulase in Bacillus subtilis. Microb Biotechnol 4:98–105. doi:10.1111/j.1751-7915.2010.00230.x

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (#2013R1A1A4A01013394) and by WTU Joint Research Grants of Konkuk University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lin-Woo Kang or Hoon Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Seung Cheol Baek and Thien-Hoang Ho contributed equally to this work.

Electronic supplementary material

.

ESM 1

(PDF 742 kb)

.

ESM 2

(MP4 14,844 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baek, S.C., Ho, TH., Lee, H.W. et al. Improvement of enzyme activity of β-1,3-1,4-glucanase from Paenibacillus sp. X4 by error-prone PCR and structural insights of mutated residues. Appl Microbiol Biotechnol 101, 4073–4083 (2017). https://doi.org/10.1007/s00253-017-8145-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-017-8145-4

Keywords

Navigation