Skip to main content

Advertisement

Log in

Microbiological study on bioremediation of 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) contaminated soil by agricultural waste composting

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

This paper studied the degradation of 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) in contaminated soil under composting and natural conditions, respectively. BDE-47 residue in agricultural waste-composting pile was determined during 45-day composting. The microbial communities were determined by polymerase chain reaction–denaturing gradient gel electrophoresis (PCR-DGGE), and the relationships between the DGGE results and physico-chemical parameters were evaluated by redundancy analysis (RDA) and heatmap-clustering analysis. The results showed that the degradation rate of BDE-47 was significantly higher in agricultural waste-composting pile compared with control group, which was enhanced up to almost 15 % at the end of composting. There were different environmental factors which affected the distribution of composting bacterial and fungal communities. The bacterial community composition was more significantly affected by the addition of BDE-47 compared with other physico-chemical parameters, and BDE-47 had stronger influences on bacterial community than fungal community during the composting. Meanwhile, the most variation in distribution of fungal community was explained by pile temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Awasthi MK, Pandey AK, Khan J, Bundela PS, Wong JW, Selvam A (2014) Evaluation of thermophilic fungal consortium for organic municipal solid waste composting. Bioresour Technol 168:214–221. doi:10.1016/j.biortech.2014.01.048

    Article  CAS  PubMed  Google Scholar 

  • Barrena R, Vázquez F, Sánchez A (2008) Dehydrogenase activity as a method for monitoring the composting process. Bioresour Technol 99(4):905–908. doi:10.1016/j.biortech.2007.01.027

    Article  CAS  PubMed  Google Scholar 

  • Benito M, Masaguer A, Moliner A, De Antonio R (2006) Chemical and physical properties of pruning waste compost and their seasonal variability. Bioresour Technol 97(16):2071–2076. doi:10.1016/j.biortech.2005.09.011

    Article  CAS  PubMed  Google Scholar 

  • Bernai M, Paredes C, Sanchez-Monedero M, Cegarra J (1998) Maturity and stability parameters of composts prepared with a wide range of organic wastes. Bioresour Technol 63(1):91–99. doi:10.1016/S0960-8524(97)00084-9

    Article  Google Scholar 

  • Binelli A, Sarkar SK, Chatterjee M, Riva C, Parolini M, Bhattacharya BD, Bhattacharya AK, Satpathy KK (2007) Concentration of polybrominated diphenyl ethers (PBDEs) in sediment cores of Sundarban mangrove wetland, northeastern part of bay of Bengal (India). Mar Pollut Bull 54(8):1220–1229. doi:10.1016/j.marpolbul.2007.03.021

    Article  CAS  PubMed  Google Scholar 

  • Brzezińska M, Stępniewska Z, Stępniewski W (1998) Soil oxygen status and dehydrogenase activity. Soil Biol Biochem 30(13):1783–1790. doi:10.1016/S0038-0717(98)00043-1

    Article  Google Scholar 

  • Cahyani VR, Matsuya K, Asakawa S, Kimura M (2003) Succession and phylogenetic composition of bacterial communities responsible for the composting process of rice straw estimated by PCR-DGGE analysis. Soil Sci Plant Nutr 49(4):619–630. doi:10.1080/00380768.2003.10410052

    Article  CAS  Google Scholar 

  • Chen Y, Huang J, Li Y, Zeng G, Zhang J, Huang A, Zhang J, Ma S, Tan X, Xu W (2015) Study of the rice straw biodegradation in mixed culture of Trichoderma viride and Aspergillus niger by GC-MS and FTIR. Environ Sci Pollut Res 22(13):9807–9815. doi:10.1007/s11356-015-4149-8

    Article  CAS  Google Scholar 

  • Chen L, Huang Y, Peng X, Xu Z, Zhang S, Ren M, Ye Z, Wang X (2009) PBDEs in sediments of the Beijiang River, China: levels, distribution, and influence of total organic carbon. Chemosphere 76(2):226–231. doi:10.1016/j.chemosphere.2009.03.033

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Zhou W, Li Y, Zhang J, Zeng G, Huang A, Huang J (2014) Nitrite reductase genes as functional markers to investigate diversity of denitrifying bacteria during agricultural waste composting. Appl Microbiol Biotechnol 98(9):4233–4243. doi:10.1007/s00253-014-5514-0

    Article  CAS  PubMed  Google Scholar 

  • Currier HA, Letcher RJ, Williams TD, Elliott JE (2015) Effects of the bioaccumulative polybrominated diphenyl ether flame retardant congener BDE-47 on growth, development, and reproductive success in zebra finches. Bull Environ Contam Toxicol 94(2):140–145. doi:10.1007/s00128-014-1393-4

    Article  CAS  PubMed  Google Scholar 

  • Deng L, Zeng G, Fan C, Lu L, Chen X, Chen M, Wu H, He X, He Y (2015) Response of rhizosphere microbial community structure and diversity to heavy metal co-pollution in arable soil. Appl Microbiol Biotechnol 99(19):8259–8269. doi:10.1007/s00253-015-6662-6

    Article  CAS  PubMed  Google Scholar 

  • Feo ML, Gross MS, McGarrigle BP, Eljarrat E, Barcelo D, Aga DS, Olson JR (2013) Biotransformation of BDE-47 to potentially toxic metabolites is predominantly mediated by human CYP2B6. Environ Health Perspect 121(4):440–446. doi:10.1289/ehp.1205446

    Article  PubMed  Google Scholar 

  • Fogarty AM, Tuovinen OH (1991) Microbiological degradation of pesticides in yard waste composting. Microbiol Rev 55(2):225–233

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia C, Hernandez T, Costa F, Ayuso M (1992) Evaluation of the maturity of municipal waste compost using simple chemical parameters. Commun Soil Sci Plan 23(13–14):1501–1512. doi:10.1080/00103629209368683

    Article  Google Scholar 

  • Hamers T, Kamstra JH, Sonneveld E, Murk AJ, Visser TJ, Van Velzen MJ, Brouwer A, Bergman Å (2008) Biotransformation of brominated flame retardants into potentially endocrine-disrupting metabolites, with special attention to 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47). Mol Nutr Food Res 52(2):284–298. doi:10.1002/mnfr.200700104

    Article  CAS  PubMed  Google Scholar 

  • Hendriks HS, Fernandes ECA, Bergman Å, van den Berg M, Westerink RH (2010) PCB-47, PBDE-47, and 6-OH-PBDE-47 differentially modulate human GABAA and α4β2 nicotinic acetylcholine receptors. Toxicol Sci 118(2):635–642. doi:10.1093/toxsci/kfq284

    Article  CAS  PubMed  Google Scholar 

  • Ishii K, Takii S (2003) Comparison of microbial communities in four different composting processes as evaluated by denaturing gradient gel electrophoresis analysis. J Appl Microbiol 95(1):109–119

    Article  CAS  PubMed  Google Scholar 

  • Kim KH, Bose DD, Ghogha A, Riehl J, Zhang R, Barnhart CD, Lein PJ, Pessah IN (2010) Para- and ortho-substitutions are key determinants of polybrominated diphenyl ether activity toward ryanodine receptors and neurotoxicity. Environ Health Perspect 119(4):519–526. doi:10.1289/ehp.1002728

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim Y-M, Nam I-H, Murugesan K, Schmidt S, Crowley DE, Chang Y-S (2007) Biodegradation of diphenyl ether and transformation of selected brominated congeners by Sphingomonas sp. PH-07. Appl Microbiol Biotechnol 77(1):187–194. doi:10.1007/s00253-007-1129-z

    Article  CAS  PubMed  Google Scholar 

  • Klamer M, Bååth E (1998) Microbial community dynamics during composting of straw material studied using phospholipid fatty acid analysis. FEMS Microbiol Ecol 27(1):9–20

    Article  CAS  Google Scholar 

  • Król S, Zabiegała B, Namieśnik J (2012) PBDEs in environmental samples: sampling and analysis. Talanta 93:1–17. doi:10.1016/j.talanta.2012.01.048

    Article  PubMed  Google Scholar 

  • LaPara TM, Nakatsu CH, Pantea L, Alleman JE (2000) Phylogenetic analysis of bacterial communities in mesophilic and thermophilic bioreactors treating pharmaceutical wastewater. Appl Environ Microbiol 66(9):3951–3959. doi:10.1128/AEM.66.9.3951-3959.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang C, Das K, McClendon R (2003) The influence of temperature and moisture contents regimes on the aerobic microbial activity of a biosolids composting blend. Bioresour Technol 86(2):131–137. doi:10.1016/S0960-8524(02)00153-0 86

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Cheng F, Li W, Xing B, Tao S (2012) Desorption behaviors of BDE-28 and BDE-47 from natural soils with different organic carbon contents. Environ Pollut 163:235–242. doi:10.1016/j.envpol.2011.12.043

    Article  CAS  PubMed  Google Scholar 

  • Lu D, Wang L, Yan B, Ou Y, Guan J, Bian Y, Zhang Y (2014) Speciation of Cu and Zn during composting of pig manure amended with rock phosphate. Waste Manag 34(8):1529–1536. doi:10.1016/j.wasman.2014.04.008

    Article  CAS  PubMed  Google Scholar 

  • Marschner P, Yang C-H, Lieberei R, Crowley D (2001) Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biol Biochem 33(11):1437–1445. doi:10.1016/S0038-0717(01)00052-9

    Article  CAS  Google Scholar 

  • May LA, Smiley B, Schmidt MG (2001) Comparative denaturing gradient gel electrophoresis analysis of fungal communities associated with whole plant corn silage. Can J Microbiol 47(9):829–841. doi:10.1139/w01-086

    Article  CAS  PubMed  Google Scholar 

  • Muyzer G, Smalla K (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Van Leeuwenhoek 73(1):127–141

    Article  CAS  PubMed  Google Scholar 

  • Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59(3):695–700

    CAS  PubMed  PubMed Central  Google Scholar 

  • Namkoong W, Hwang E-Y, Park J-S, Choi J-Y (2002) Bioremediation of diesel-contaminated soil with composting. Environ Pollut 119(1):23–31. doi:10.1016/S0269-7491(01)00328-1

    Article  CAS  PubMed  Google Scholar 

  • Nelson DW, Sommers L (1980) Total nitrogen analysis of soil and plant tissues. Assoc Off Anal Chem 63(4):770–778

    CAS  Google Scholar 

  • Nouira T, Risso C, Chouba L, Budzinski H, Boussetta H (2013) Polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) in surface sediments from Monastir Bay (Tunisia, central Mediterranean): occurrence, distribution and seasonal variations. Chemosphere 93(3):487–493. doi:10.1016/j.chemosphere.2013.06.017

    Article  CAS  PubMed  Google Scholar 

  • Pietikäinen J, Pettersson M, Bååth E (2005) Comparison of temperature effects on soil respiration and bacterial and fungal growth rates. FEMS Microbiol Ecol 52(1):49–58. doi:10.1016/j.femsec.2004.10.002

    Article  PubMed  Google Scholar 

  • Raj D, Antil R (2011) Evaluation of maturity and stability parameters of composts prepared from agro-industrial wastes. Bioresour Technol 102(3):2868–2873. doi:10.1016/j.biortech.2010.10.077

    Article  CAS  PubMed  Google Scholar 

  • Robrock KR, Coelhan M, Sedlak DL, Alvarez-Cohen L (2009) Aerobic biotransformation of polybrominated diphenyl ethers (PBDEs) by bacterial isolates. Environ Sci Technol 43(15):5705–5711. doi:10.1021/es900411k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schenker U, Soltermann F, Scheringer M, Hungerbühler K (2008) Modeling the environmental fate of polybrominated diphenyl ethers (PBDEs): the importance of photolysis for the formation of lighter PBDEs. Environ Sci Technol 42(24):9244–9249. doi:10.1021/es801042n

    Article  CAS  PubMed  Google Scholar 

  • Serra-Wittling C, Houot S, Barriuso E (1995) Soil enzymatic response to addition of municipal solid-waste compost. Biol Fertil Soils 20(4):226–236. doi:10.1007/BF00336082

    Article  Google Scholar 

  • Sun S, Zhang Z, Chen Y, Hu Y (2016) Biosorption and biodegradation of BDE-47 by Pseudomonas stutzier. Int Biodeterior Biodegradation 108:16–23. doi:10.1016/j.ibiod.2015.11.005

    Article  CAS  Google Scholar 

  • Tian RM, Lee OO, Wang Y, Cai L, Bougouffa S, Chiu JM, Wu RS, Qian PY (2014) Effect of polybrominated diphenyl ether (PBDE) treatment on the composition and function of the bacterial community in the sponge Haliclona cymaeformis. Front Microbiol 5:799. doi:10.3389/fmicb.2014.00799

    PubMed  Google Scholar 

  • Tuomela M, Vikman M, Hatakka A, Itävaara M (2000) Biodegradation of lignin in a compost environment: a review. Bioresour Technol 72(2):169–183. doi:10.1016/S0960-8524(99)00104-2

    Article  CAS  Google Scholar 

  • Wang JZ, Hou Y, Zhang J, Zhu J, Feng YL (2013) Transformation of 2,2′,4,4′-tetrabromodiphenyl ether under UV irradiation: potential sources of the secondary pollutants. J Hazard Mater 263(Pt 2):778–783. doi:10.1016/j.jhazmat.2013.10.005

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Luo C, Li J, Yin H, Li X, Zhang G (2011) Characterization of PBDEs in soils and vegetations near an e-waste recycling site in south China. Environ Pollut 159(10):2443–2448. doi:10.1016/j.envpol.2011.06.030

    Article  CAS  PubMed  Google Scholar 

  • Xie Y, Fang Z, Cheng W, Tsang PE, Zhao D (2014) Remediation of polybrominated diphenyl ethers in soil using Ni/Fe bimetallic nanoparticles: influencing factors, kinetics and mechanism. Sci Total Environ 485-486:363–370. doi:10.1016/j.scitotenv.2014.03.039

    Article  CAS  PubMed  Google Scholar 

  • Xin J, Liu X, Jiang L, Li M (2012) BDE-47 sorption and desorption to soil matrix in single- and binary-solute systems. Chemosphere 87(5):477–482. doi:10.1016/j.chemosphere.2011.12.034

    Article  CAS  PubMed  Google Scholar 

  • Xin J, Liu X, Liu W, Zheng XL (2014) Aerobic transformation of BDE-47 by a Pseudomonas putida sp. strain TZ-1 isolated from PBDEs-contaminated sediment. Bull Environ Contam Toxicol 93(4):483–488. doi:10.1007/s00128-014-1306-6

    Article  CAS  PubMed  Google Scholar 

  • Xu M, Chen X, Qiu M, Zeng X, Xu J, Deng D, Sun G, Li X, Guo J (2012) Bar-coded pyrosequencing reveals the responses of PBDE-degrading microbial communities to electron donor amendments. PLoS One 7(1):e30439. doi:10.1371/journal.pone.0030439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yen JH, Liao WC, Chen WC, Wang YS (2009) Interaction of polybrominated diphenyl ethers (PBDEs) with anaerobic mixed bacterial cultures isolated from river sediment. J Hazard Mater 165(1–3):518–524. doi:10.1016/j.jhazmat.2008.10.007

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Wang C, Li J, Wang B, Wu J, Jiang Y, Sun H (2014) Enhanced bioremediation of soil from Tianjin, China, contaminated with polybrominated diethyl ethers. Environ Sci Pollut Res 21(24):14037–14046. doi:10.1007/s11356-014-3313-x

    Article  CAS  Google Scholar 

  • Zhang S, Xia X, Xia N, Wu S, Gao F, Zhou W (2013) Identification and biodegradation efficiency of a newly isolated 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) aerobic degrading bacterial strain. Int Biodeterior Biodegradation 76:24–31. doi:10.1016/j.ibiod.2012.06.020

    Article  CAS  Google Scholar 

  • Zhang J, Zeng G, Chen Y, Yu M, Yu Z, Li H, Yu Y, Huang H (2011) Effects of physico-chemical parameters on the bacterial and fungal communities during agricultural waste composting. Bioresour Technol 102(3):2950–2956. doi:10.1016/j.biortech.2010.11.089

    Article  CAS  PubMed  Google Scholar 

  • Zou M-Y, Ran Y, Gong J, Mai B-X, Ey Z (2007) Polybrominated diphenyl ethers in watershed soils of the Pearl River Delta, China: occurrence, inventory, and fate. Environ Sci Technol 41(24):8262–8267. doi:10.1021/es071956d

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yaoning Chen or Yuanping Li.

Ethics declarations

Funding

This study was financially supported by the Program for Changjiang Scholars and Innovative Research Team in University (IRT0719), the National Natural Science Foundation of China (51,521,006, 51,378,190, and 21,276,069), the Fundamental Research Funds for the Central Universities, the State Scholarship Fund, and the Hunan Provincial Natural Science Foundation of China (13JJB002).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors. The article is an original paper, is not under consideration by another journal, and has not been published previously. All authors read and approved the final manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Ma, S., Li, Y. et al. Microbiological study on bioremediation of 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) contaminated soil by agricultural waste composting. Appl Microbiol Biotechnol 100, 9709–9718 (2016). https://doi.org/10.1007/s00253-016-7798-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7798-8

Keywords

Navigation