Skip to main content
Log in

Biodegradation of diphenyl ether and transformation of selected brominated congeners by Sphingomonas sp. PH-07

  • Environmental Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Polybrominated diphenyl ethers (PBDEs) are common flame-retardant chemicals that are used in diverse commercial products such as textiles, circuit boards, and plastics. Because of the widespread production and improper disposal of materials that contain PBDEs, there has been an increasing accumulation of these compounds in the environment. The toxicity and bioavailability of PBDEs are variable for different congeners, with some congeners showing dioxin-like activities and estrogenicity. The diphenyl ether-utilizing bacterium Sphingomonas sp. PH-07 was enriched from activated sludge of a wastewater treatment plant. In liquid cultures, this strain mineralized 1 g of diphenyl ether per liter completely within 6 days. The metabolites detected and identified by gas chromatography/mass spectrometry (MS) and electrospray ionization/MS analysis corresponded with a feasible degradative pathway. However, the strain PH-07 even catabolized several brominated congeners such as mono-, di-, and tribrominated diphenyl ethers thereby producing the corresponding metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barton DHR, Finet JP, Khamsi J, Pichon C (1986) Copper catalysed o-phenylation of phenols and enols by pentavalent organobismuth compounds. Tetrahedron Lett 27:3619–3622

    Article  CAS  Google Scholar 

  • Birnbaum LS, Staskal DF (2004) Brominated flame retardants: cause for concern? Environ Health Perspect 112:9–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Branchi I, Alleva E, Costa LG (2002) Effects of perinatal exposure to a polybrominated diphenyl ether (PBDE 99) on mouse neurobehavioural development. Neurotoxicology 23(3):375–384

    Article  CAS  PubMed  Google Scholar 

  • Cupples AM, Sanford RA, Sims GK (2005) Dehalogenation of the herbicides bromoxynil (3,5-dibromo-4-hydroxybenzonitrile) and ioxynil (3,5-diiodino-4-hydroxybenzonitrile) by Desulfitobacterium chlororespirans. Appl Environ Microbiol 71:3741–3746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fortnagel P, Harms H, Wittich RM, Krohn S, Meyer H, Sinnwell V, Wilkes H, Francke W (1990) Metabolism of dibenzofuran by Pseudomonas sp. strain HH69 and the mixed culture HH27. Appl Environ Microbiol 56:1148–1156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hakk H, Letcher RJ (2003) Metabolism. in the toxicokinetics and fate of brominated flame retardants—a review. Environ Int 29:801–828

    Article  CAS  PubMed  Google Scholar 

  • Hong HB, Nam IH, Murugesan K, Kim YM, Chang YS (2004) Biodegradation of dibenzo-p-dioxin, dibenzofuran, and chlorodibenzo-p-dioxins by Pseudomonas veronii PH-03. Biodegradation 15:303–313

    Article  CAS  PubMed  Google Scholar 

  • Hundt K, Jonas U, Hammer E, Schauer F (1999) Transformation of diphenyl ethers by Trametes versicolor and characterization of ring cleavage products. Biodegradation 10:279–286

    Article  CAS  Google Scholar 

  • Keum YS, Li QX (2005) Reductive debromination of polybrominated diphenyl ethers by zerovalent iron. Environ Sci Technol 39:2280–2286

    Article  CAS  PubMed  Google Scholar 

  • Klečka GM, Gibson DT (1979) Metabolism of dibenzo[1,4]dioxan by a Pseudomonas species. Biochem J 180:639–645

    Article  PubMed  PubMed Central  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 115–175

    Google Scholar 

  • Leifson E (1930) A method of staining bacterial flagella and capsules together with a study of the origin of flagella. J Bacteriol 20:203–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfeifer F, Trüper HG, Klein J, Schacht S (1993) Degradation of diphenyl ether by Pseudomonas cepacia Et4: enzymatic release of phenol from 2,3-dihydroxy-diphenyl ether. Arch Microbiol 159:323–329

    Article  CAS  PubMed  Google Scholar 

  • Pirard C, Pauw ED, Focant JF (2003) New strategy for comprehensive analysis of polybrominated diphenyl ethers, polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans and poly chlorinated biphenyls by gas chromatography coupled with mass spectrometry. J Chromatogr A 998:169–181

    Article  CAS  PubMed  Google Scholar 

  • Rayne S, Ikonomou MG, Whale MD (2003) Anaerobic microbial and photochemical degradation of 4,4′-dibromodiphenyl ether. Water Res 37:551–560

    Article  CAS  PubMed  Google Scholar 

  • Richardson SD (2004) Environmental mass spectrometry: emerging contaminants and current issues. Anal Chem 76:3337–3364

    Article  CAS  PubMed  Google Scholar 

  • Schmidt S, Wittich RM, Erdmann D, Wilkes H, Francke W, Fortnagel P (1992) Biodegradation of diphenyl ether and its monohalogenated derivatives by Sphingomonas sp. strain SS3. Appl Environ Microbiol 58:2744–2750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt S, Fortnagel P, Wittich RM (1993) Biodegradation and transformation of 4,4′- and 2,4-dihalodiphenyl ethers by Sphingomonas sp. strain SS33. Appl Environ Microbiol 59:3931–3933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Söderström G, Sellström U, Wit CA, Tysklind M (2004) Photolytic debromination of decabromodiphenyl ether (BDE 209). Environ Sci Technol 38:127–132

    Article  PubMed  Google Scholar 

  • Takase I, Omori T, Minoda Y (1986) Microbial degradation products from biphenyl-related compounds. Agric Biol Chem 50:681–686

    CAS  Google Scholar 

  • Viberg H, Fredriksson A, Eriksson P (2002) Neonatal exposure to the brominated flame retardant 2,2′,4,4′,5-pentabromodiphenyl ether causes altered susceptibility in the cholinergic transmitter system in the adult mouse. Toxicol Sci 67(1):104–107

    Article  CAS  PubMed  Google Scholar 

  • Viberg H, Fredriksson A, Jakobsson E, Orn U, Eriksson P (2003) Neurobehavioral derangements in adult mice receiving decabrominated diphenyl ether (PBDE 209) during a defined period of neonatal brain development. Toxicol Sci 76(1):112–120

    Article  CAS  PubMed  Google Scholar 

  • Vonderheide AP, Mueller-Spitz SR, Meija J, Welsh GL, Mueller KE, Kinkle BK, Shann JR, Caruso JA (2006) Rapid breakdown of brominated flame retardants by soil microorganisms. J Anal At Spectrom 21:1232–1239

    Article  Google Scholar 

  • White GF, Russell NJ, Tidswell EC (1996) Bacterial scission of ether bonds. Microbiol Rev 60:216–232

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu J, Flagan RC, Seinfeld JH (1998) Identification of products containing COOH, –OH, and –C=O in atmospheric oxidation of hydrocarbons. Environ Sci Technol 32:2357–2370

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Korea Research Foundation as a “Brain Korea 21” project and “International Internship Program.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoon-Seok Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, YM., Nam, IH., Murugesan, K. et al. Biodegradation of diphenyl ether and transformation of selected brominated congeners by Sphingomonas sp. PH-07. Appl Microbiol Biotechnol 77, 187–194 (2007). https://doi.org/10.1007/s00253-007-1129-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-1129-z

Keywords

Navigation