Skip to main content
Log in

Nisin production in realkalized fed-batch cultures in whey with feeding with lactose- or glucose-containing substrates

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Nisin production by Lactococcus lactis CECT 539 was followed in batch cultures in whey supplemented with different concentrations of glucose and in two realkalized fed-batch fermentations in unsupplemented whey, which were fed, respectively, with concentrated solutions of lactose and glucose. In the batch fermentations, supplementation of whey with glucose inhibited both the growth and bacteriocin production. However, fed-batch cultures were characterized with high productions of biomass (1.34 and 1.51 g l−1) and nisin (50.6 and 60.3 BU ml−1) in comparison to the batch fermentations in unsupplemented whey (0.48 g l−1 and 22.5 BU ml−1) and MRS broth (1.59 g l−1 and 50.0 BU ml−1). In the two realkalized fed-batch fermentations, the increase in bacteriocin production parallels both the biomass production and pH drop generated in each realkalization and feeding cycle, suggesting that nisin was synthesized as a pH-dependent primary metabolite. A shift from homolactic to heterolactic fermentation was observed at the 108 h of incubation, and other metabolites (acetic acid and butane-2,3-diol) in addition to lactic acid accumulated in the medium. On the other hand, the feeding with glucose improved the efficiencies in glucose, nitrogen, and phosphorus consumption as compared to the batch cultures. The realkalized fed-batch fermentations showed to be an effective strategy to enhance nisin production in whey by using an appropriate feeding strategy to avoid the substrate inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Åkerberg C, Hofvendahl K, Zacchi G, Hahn-Hägerdal B (1998) Modelling the influence of pH, temperature, glucose and lactic acid concentrations on the kinetics of lactic acid production by Lactococcus lactis ssp. lactis ATCC 19435 in whole-wheat flour. Appl Microbiol Biotechnol 49:682–690. doi:10.1007/s002530051232

    Article  Google Scholar 

  • Aleksandrzak T, Kok J, Renault P, Bardowski J (2005) Alternative lactose catabolic pathway in Lactococcus lactis IL1403. Appl Environ Microbiol 71:6060–6069. doi:10.1128/AEM.71.10.6060-6069.2005

    Article  Google Scholar 

  • Amiali MN, Lacroix C, Simard RE (1998) High nisin Z production by Lactococcus lactis UL719 in whey permeate with aeration. World J Microbiol Biotechnol 14:887–894. doi:10.1023/A:1008863111274

    Article  CAS  Google Scholar 

  • Bouguettoucha A, Balannec B, Amrane A (2011) Unstructured models for lactic acid fermentation—a review. Food Technol Biotechnol 49:3–12

    CAS  Google Scholar 

  • Cabo ML, Murado MA, González MP, Pastoriza L (2001) Effects of aeration and pH gradient on nisin production. A mathematical model. Enz Microb Technol 29:264–273. doi:10.1016/S0141-0229(01)00378-7

    Article  CAS  Google Scholar 

  • Cocaign-Bousquet M, Garrigues C, Loubiere P, Lindley ND (1996) Physiology of pyruvate metabolism in Lactococcus lactis. Antonie van Leeuw 70:253–267. doi:10.1007/BF00395936

    Article  CAS  Google Scholar 

  • De Vuyst L (1995) Nutritional factors affecting nisin production by Lactococcus lactis subsp. lactis NIZO 22186 in a synthetic medium. J Appl Bacteriol 78:28–33. doi:10.1111/j.1365-2672.1995.tb01669.x

    Article  CAS  Google Scholar 

  • Dubois M, Giles UA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356. doi:10.1021/ac60111a017

    Article  CAS  Google Scholar 

  • Fajardo P, Rodríguez I, Pastrana L, Guerra NP (2008) Production of a potentially probiotic culture of Lactobacillus casei subsp. casei CECT 4043 in whey. Int Dairy J 18:1057–1065. doi:10.1016/j.idairyj.2008.05.004

    Article  Google Scholar 

  • Garrigues C, Loubiere P, Lindley ND, Cocaign-Bousquet M (1997) Control of the shift from homolactic acid to mixed-acid fermentation in Lactococcus lactis: predominant role of the NADH/NAD+ ratio. J Bacteriol 179:5282–5287

    CAS  PubMed  PubMed Central  Google Scholar 

  • González SY, Domínguez J, García BE, Prado LA, Regalado C (2010) Optimization of nisin production by Lactococcus lactis UQ2 using supplemented whey as alternative culture medium. J Food Sci 75:M347–M353. doi:10.1111/j.1750-3841.2010.01670.x

    Article  Google Scholar 

  • Guerra NP, Pastrana L (2002) Modelling the influence of pH on the kinetics of both nisin and pediocin production and characterization of their functional properties. Proc Biochem 37:1005–1015. doi:10.1016/S0032-9592(01)00312-0

    Article  CAS  Google Scholar 

  • Guerra NP, Pastrana L (2003) Enhancement of nisin production by Lactococcus lactis in periodically re-alkalized cultures. Biotechnol Appl Biochem 38:157–167. doi:10.1042/BA20030059

    Article  CAS  PubMed  Google Scholar 

  • Guerra NP, Fajardo P, Pastrana L (2008) Modelling the stress inducing biphasic growth and pediocin production by Pediococcus acidilactici NRRL B-5627 in re-alkalized fed-batch cultures. Biochem Eng J 40:465–472. doi:10.1016/j.bej.2008.02.001

    Article  CAS  Google Scholar 

  • Guerra NP, Fajardo P, Torrado A, López C, Pastrana L (2005) Fed-batch pediocin production by Pediococcus acidilactici NRRL B-5627 on whey. Biotechnol Appl Biochem 42:17–23. doi:10.1042/BA20040146

    Article  CAS  Google Scholar 

  • Guerra NP, Rua ML, Pastrana L (2001) Nutritional factors affecting the production of two bacteriocins from lactic acid bacteria on whey. Int J Food Microbiol 70:267–281. doi:10.1016/S0168-1605(01)00551-7

    Article  CAS  PubMed  Google Scholar 

  • Guerra NP, Torrado A, López C, Fajardo P, Pastrana L (2007) Dynamic mathematical models to describe the growth and nisin production by Lactococcus lactis subsp. lactis CECT 539 in both batch and re-alkalized fed-batch cultures. J Food Eng 82:103–113. doi:10.1016/j.jfoodeng.2006.11.031

    Article  CAS  Google Scholar 

  • Havilah EJ, Wallis DM, Morris R, Woolnough JA (1977) A microcolorimetric method for determination of ammonia in Kjeldahl digests with a manual spectrophotometer. Lab Pract 26:545–547

    CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 270:265–275

    Google Scholar 

  • Matsusaki H, Endo N, Sonomoto K, Ishizaki A (1996) Lantibiotic nisin Z fermentative production by Lactococcus lactis IO-1: relationship between production of the lantibiotic and lactate and cell growth. Appl Microbiol Biotechnol 45:36–40. doi:10.1007/s002530050645

    Article  CAS  PubMed  Google Scholar 

  • Mierau I, Kleerebezem M (2005) 10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis. Appl Microbiol Biotechnol 68:705–717. doi:10.1007/s00253-005-0107-6

    Article  CAS  PubMed  Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36. doi:10.1016/S0003-2670(00)88444-5

    Article  CAS  Google Scholar 

  • van Niel EWJ, Hahn-Hägerdal B (1999) Nutrient requirements of lactococci in defined growth media. Appl Microbiol Biotechnol 52:617–627. doi:10.1007/s002530051569

    Article  Google Scholar 

  • Passerini D, Coddeville M, Le Bourgeois P, Loubière P, Ritzenthaler P, Fontagné-Faucher C, Daveran-Mingot ML, Cocaign-Bousquet M (2013) The carbohydrate metabolism signature Lactococcus lactis strain A12 reveals its sourdough ecosystem origin. Appl Environ Microbiol 79:5844–5852. doi:10.1128/AEM.01560-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pongtharangkul T, Demirci A (2006) Effects of fed-batch fermentation and pH profiles on nisin production in suspended-cell and biofilm reactors. Appl Microbiol Biotechnol 73:73–79. doi:10.1007/s00253-006-0459-6

    Article  CAS  PubMed  Google Scholar 

  • Poolman B, Konings WN (1988) Relation of growth of Streptococcus lactis and Streptococcus cremoris to amino acid transport. J Bacteriol 170:700–707

    CAS  PubMed  PubMed Central  Google Scholar 

  • van Rooijen RJ, Gasson MJ, de Vos WM (1992) Characterization of the Lactococcus lactis lactose operon promoter: contribution of flanking sequences and LacR repressor to promoter activity. J Bacteriol 174:2273–2280

    PubMed  PubMed Central  Google Scholar 

  • Snoep JL, Teixeira de Mattos MJ, Starrenburg M, Hugenholtz J (1992) Isolation, characterization, and physiological role of the pyruvate dehydrogenase complex and alpha-acetolactate synthase of Lactococcus lactis subsp. lactis bv. diacetylactis. J Bacteriol 174:4831–4841

    Google Scholar 

  • Strickland JDH, Parsons TR (1968a) Determination of carbohydrate. In: Strickland JDH, Parsons TR (eds) A practical handbook of sea water analysis, 2nd edn. Fisheries Research Board, Ottawa, pp 173–174

    Google Scholar 

  • Strickland JDH, Parsons TR (1968b) Determination of total phosphorus. In: Strickland JDH, Parsons TR (eds) A practical handbook of sea water analysis, 2nd edn. Fisheries Research Board, Ottawa, pp 57–62

    Google Scholar 

  • Vázquez JA, Cabo ML, González MP, Murado MA (2004) The role of amino acids in nisin and pediocin production by two lactic acid bacteria: a factorial study. Enz Microb Technol 34:319–325. doi:10.1016/j.enzmictec.2003.11.005

    Article  Google Scholar 

  • Veyrat A, Monedero V, Pérez G (1994) Glucose transport by the phosphoenolpyruvate: mannose phosphotransferase system in Lactobacillus casei ATCC 393 and its role in carbon catabolite repression. Microbiol 140:1141–1149. doi:10.1099/13500872-140-5-1141

    Article  CAS  Google Scholar 

  • Wu Z, Wang L, Jing Y, Li X, Zhao Y (2009) Variable volume fed-batch fermentation for nisin production by Lactococcus lactis subsp. lactis W28. Appl Biochem Biotechnol 152:372–382. doi:10.1007/s12010-0088335-8

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelson Pérez Guerra.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costas Malvido, M., Alonso González, E. & Pérez Guerra, N. Nisin production in realkalized fed-batch cultures in whey with feeding with lactose- or glucose-containing substrates. Appl Microbiol Biotechnol 100, 7899–7908 (2016). https://doi.org/10.1007/s00253-016-7558-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7558-9

Keywords

Navigation