Skip to main content

Advertisement

Log in

Up-regulation of MDP and tuftsin gene expression in Th1 and Th17 cells as an adjuvant for an oral Lactobacillus casei vaccine against anti-transmissible gastroenteritis virus

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The role of muramyl dipeptide (MDP) and tuftsin in oral immune adjustment remains unclear, particularly in a Lactobacillus casei (L. casei) vaccine. To address this, we investigated the effects of different repetitive peptides expressed by L. casei, specifically the MDP and tuftsin fusion protein (MT) repeated 20 and 40 times (20MT and 40MT), in mice also expressing the D antigenic site of the spike (S) protein of transmissible gastroenteritis virus (TGEV) on intestinal and systemic immune responses and confirmed the immunoregulation of these peptides. Treatment of mice with a different vaccine consisting of L. casei expressing MDP and tuftsin stimulated humoral and cellular immune responses. Both 20MT and 40MT induced an increase in IgG and IgA levels against TGEV, as determined using enzyme-linked immunosorbent assay. Increased IgG and IgA resulted in the activation of TGEV-neutralising antibody activity in vitro. In addition, 20MT and 40MT stimulated the differentiation of innate immune cells, including T helper cell subclasses and regulatory T (Treg) cells, which induced robust T helper type 1 and T helper type 17 (Th17) responses and reduced Treg T cell immune responses in the 20MT and 40MT groups, respectively. Notably, treatment of mice with L. casei expressing 20MT and 40MT enhanced the anti-TGEV antibody immune responses of both the humoral and mucosal immune systems. These findings suggest that L. casei expressing MDP and tuftsin possesses substantial immunopotentiating properties, as it can induce humoral and T cell-mediated immune responses upon oral administration, and it may be useful in oral vaccines against TGEV challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bernard S, Laude H (1995) Site-specific alteration of transmissible gastroenteritis virus spike protein results in markedly reduced pathogenicity. J Gen Virol 76(Pt 9):2235–41

    Article  PubMed  CAS  Google Scholar 

  • Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, Weiner HL, Kuchroo VK (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441(7090):235–8

    Article  PubMed  CAS  Google Scholar 

  • Castilla J, Sola I, Enjuanes L (1997) Interference of coronavirus infection by expression of immunoglobulin G (IgG) or IgA virus-neutralizing antibodies. J Virol 71(7):5251–8

    PubMed  CAS  PubMed Central  Google Scholar 

  • Di-Qiu L, Xin-Yuan Q, Jun-Wei G, Li-Jie T, Yan-Ping J, Yi-Jing L (2011) Construction and characterization of Lactobacillus pentosus expressing the D antigenic site of the spike protein of transmissible gastroenteritis virus. Can J Microbiol 57(5):392–7

    Article  PubMed  Google Scholar 

  • Dzierzbicka K, Wardowska A, Rogalska M, Trzonkowski P (2012) New conjugates of muramyl dipeptide and nor-muramyl dipeptide linked to tuftsin and retro-tuftsin derivatives significantly influence their biological activity. Pharmacol Rep : PR 64(1):217–23

    Article  PubMed  CAS  Google Scholar 

  • Esplugues E, Huber S, Gagliani N, Hauser AE, Town T, Wan YY, O’Connor W Jr, Rongvaux A, Van Rooijen N, Haberman AM, Iwakura Y, Kuchroo VK, Kolls JK, Bluestone JA, Herold KC, Flavell RA (2011) Control of TH17 cells occurs in the small intestine. Nature 475(7357):514–8

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Iwakura Y, Nakae S, Saijo S, Ishigame H (2008) The roles of IL-17A in inflammatory immune responses and host defense against pathogens. Immunol Rev 226:57–79

    Article  PubMed  CAS  Google Scholar 

  • Korn T, Bettelli E, Oukka M, Kuchroo VK (2009) IL-17 and Th17 Cells. Annu Rev Immunol 27:485–517

    Article  PubMed  CAS  Google Scholar 

  • Kotani Y, Shinkai S, Okamatsu H, Toba M, Ogawa K, Yoshida H, Fukaya T, Fujiwara Y, Chaves PH, Kakumoto K, Kohda N (2010) Oral intake of Lactobacillus pentosus strain b240 accelerates salivary immunoglobulin A secretion in the elderly: a randomized, placebo-controlled, double-blind trial. Immun Ageing: I & A 7:11

    Article  Google Scholar 

  • Kukowska-Kaszuba M, Dzierzbicka K, Serocki M, Skladanowski A (2011) Solid phase synthesis and biological activity of tuftsin conjugates. J Med Chem 54(7):2447–54

    Article  PubMed  CAS  Google Scholar 

  • Kumar M, Kumar A, Nagpal R, Mohania D, Behare P, Verma V, Kumar P, Poddar D, Aggarwal PK, Henry CJ, Jain S, Yadav H (2010) Cancer-preventing attributes of probiotics: an update. Int J Food Sci Nutr 61(5):473–96

    Article  PubMed  CAS  Google Scholar 

  • Ley RE, Peterson DA, Gordon JI (2006) Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124(4):837–48

    Article  PubMed  CAS  Google Scholar 

  • Lise LD, Audibert F (1989) Immunoadjuvants and analogs of immunomodulatory bacterial structures. Curr Opin Immunol 2(2):269–74

    Article  PubMed  CAS  Google Scholar 

  • Liu D, Wang X, Ge J, Liu S, Li Y (2011) Comparison of the immune responses induced by oral immunization of mice with Lactobacillus casei-expressing porcine parvovirus VP2 and VP2 fused to Escherichia coli heat-labile enterotoxin B subunit protein. Comp Immunol, Microbiol Infect Dis 34(1):73–81

    Article  Google Scholar 

  • Maragkoudakis PA, Chingwaru W, Gradisnik L, Tsakalidou E, Cencic A (2010) Lactic acid bacteria efficiently protect human and animal intestinal epithelial and immune cells from enteric virus infection. Int J Food Microbiol 141(Suppl 1):S91–7

    Article  PubMed  Google Scholar 

  • Mayer L (2000a) Mucosal immunity and gastrointestinal antigen processing. J Pediatr Gastroenterol Nutr 30(Suppl):S4–12

    Article  PubMed  CAS  Google Scholar 

  • Mayer L (2000b) Oral tolerance: new approaches, new problems. Clin Immunol 94(1):1–8

    Article  PubMed  CAS  Google Scholar 

  • Mazmanian SK, Round JL, Kasper DL (2008) A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 453(7195):620–5

    Article  PubMed  CAS  Google Scholar 

  • Menendez-Arias L, Mas A, Domingo E (1998) Cytotoxic T-lymphocyte responses to HIV-1 reverse transcriptase (review). Viral Immunol 11(4):167–81

    Article  PubMed  CAS  Google Scholar 

  • Mills KH (2008) Induction, function and regulation of IL-17-producing T cells. Eur J Immunol 38(10):2636–49

    Article  PubMed  CAS  Google Scholar 

  • Mora JR, Iwata M, Eksteen B, Song SY, Junt T, Senman B, Otipoby KL, Yokota A, Takeuchi H, Ricciardi-Castagnoli P, Rajewsky K, Adams DH, von Andrian UH (2006) Generation of gut-homing IgA-secreting B cells by intestinal dendritic cells. Science 314(5802):1157–60

    Article  PubMed  CAS  Google Scholar 

  • Mucida D, Pino-Lagos K, Kim G, Nowak E, Benson MJ, Kronenberg M, Noelle RJ, Cheroutre H (2009) Retinoic acid can directly promote TGF-beta-mediated Foxp3(+) Treg cell conversion of naive T cells. Immunity 30(4):471–2, author reply 472–3

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Neurath MF, Finotto S, Glimcher LH (2002) The role of Th1/Th2 polarization in mucosal immunity. Nat Med 8(6):567–73

    Article  PubMed  CAS  Google Scholar 

  • Nissen JC, Selwood DL, Tsirka SE (2013) Tuftsin signals through its receptor neuropilin-1 via the transforming growth factor beta pathway. J Neurochem 127(3):394–402

    Article  PubMed  CAS  Google Scholar 

  • Owen RL, Bhalla DK (1983) Cytochemical analysis of alkaline phosphatase and esterase activities and of lectin-binding and anionic sites in rat and mouse Peyer’s patch M cells. Am J Anat 168(2):199–212

    Article  PubMed  CAS  Google Scholar 

  • Peine M, Rausch S, Helmstetter C, Frohlich A, Hegazy AN, Kuhl AA, Grevelding CG, Hofer T, Hartmann S, Lohning M (2013) Stable T-bet(+)GATA-3(+) Th1/Th2 hybrid cells arise in vivo, can develop directly from naive precursors, and limit immunopathologic inflammation. PLoS Biol 11(8):e1001633

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Posthumus WP, Lenstra JA, Schaaper WM, van Nieuwstadt AP, Enjuanes L, Meloen RH (1990) Analysis and simulation of a neutralizing epitope of transmissible gastroenteritis virus. J Virol 64(7):3304–9

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pouwels PH, Leunissen JA (1994) Divergence in codon usage of Lactobacillus species. Nucleic Acids Res 22(6):929–36

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Qiao X, Li G, Wang X, Li X, Liu M, Li Y (2009) Recombinant porcine rotavirus VP4 and VP4-LTB expressed in Lactobacillus casei induced mucosal and systemic antibody responses in mice. BMC Microbiol 9:249

    Article  PubMed  PubMed Central  Google Scholar 

  • Qu N, Xu M, Mizoguchi I, Furusawa J, Kaneko K, Watanabe K, Mizuguchi J, Itoh M, Kawakami Y, Yoshimoto T (2013) Pivotal roles of T-helper 17-related cytokines, IL-17, IL-22, and IL-23, in inflammatory diseases. Clin Dev Immunol 2013:968549

    Article  PubMed  PubMed Central  Google Scholar 

  • Rahimi RA, Leof EB (2007) TGF-beta signaling: a tale of two responses. J Cell Biochem 102(3):593–608

    Article  PubMed  CAS  Google Scholar 

  • Sakaguchi S, Baba K, Ishikawa M, Yoshikawa R, Shojima T, Miyazawa T (2008a) Focus assay on RD114 virus in QN10S cells. J Vet Med Sci / J Soc Vet Sci 70(12):1383–6

    Article  CAS  Google Scholar 

  • Sakaguchi S, Yamaguchi T, Nomura T, Ono M (2008b) Regulatory T cells and immune tolerance. Cell 133(5):775–87

    Article  PubMed  CAS  Google Scholar 

  • Sarra M, Pallone F, Macdonald TT, Monteleone G (2010) IL-23/IL-17 axis in IBD. Inflamm Bowel Dis 16(10):1808–13

    Article  PubMed  Google Scholar 

  • Siemion IZ, Kluczyk A (1999) Tuftsin: on the 30-year anniversary of Victor Najjar’s discovery. Peptides 20(5):645–74

    Article  PubMed  CAS  Google Scholar 

  • Su B, Wang J, Wang X, Jin H, Zhao G, Ding Z, Kang Y, Wang B (2008) The effects of IL-6 and TNF-alpha as molecular adjuvants on immune responses to FMDV and maturation of dendritic cells by DNA vaccination. Vaccine 26(40):5111–22

    Article  PubMed  CAS  Google Scholar 

  • Van Eden W, Van Der Zee R, Van Kooten P, Berlo SE, Cobelens PM, Kavelaars A, Heijnen CJ, Prakken B, Roord S, Albani S (2002) Balancing the immune system: Th1 and Th2. Ann Rheum Dis 61(Suppl 2):i25–8

    Google Scholar 

  • Wardowska A, Dzierzbicka K, Trzonkowski P, Mysliwski A (2006) Immunomodulatory properties of new conjugates of muramyl dipeptide and nor-muramyl dipeptide with retro-tuftsin (Arg-Pro-Lys-Thr-OMe). Int Immunopharmacol 6(10):1560–8

    Article  PubMed  CAS  Google Scholar 

  • Wardowska A, Dzierzbicka K, Menderska A, Trzonkowski P (2013) New conjugates of tuftsin and muramyl dipeptide as stimulators of human monocyte-derived dendritic cells. Protein Pept Lett 20(2):200–4

    Article  PubMed  CAS  Google Scholar 

  • Wilson-Welder JH, Torres MP, Kipper MJ, Mallapragada SK, Wannemuehler MJ, Narasimhan B (2009) Vaccine adjuvants: current challenges and future approaches. J Pharm Sci 98(4):1278–316

    Article  PubMed  CAS  Google Scholar 

  • Yigang XU, Yijing LI (2008) Construction of recombinant Lactobacillus casei efficiently surface displayed and secreted porcine parvovirus VP2 protein and comparison of the immune responses induced by oral immunization. Immunology 124(1):68–75

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yin JC, Ren XF, Li YJ (2005) Molecular cloning and phylogenetic analysis of ORF7 region of chinese isolate TH-98 from transmissible gastroenteritis virus. Virus Genes 30(3):395–401

    Article  PubMed  CAS  Google Scholar 

  • Yorulmaz E, Adali G, Yorulmaz H, Ulasoglu C, Tasan G, Tuncer I (2011) Metabolic syndrome frequency in inflammatory bowel diseases. Saudi J Gastroenterol: Off J Saudi Gastroenterol Assoc 17(6):376–82

    Article  Google Scholar 

  • Zhang N, Hou X, Yu L, Wang G, Zhao Z, Gao Y (2010) Colonization and distribution of recombinant Lactobacillus casei with green fluorescent protein in mice intestine. Wei sheng wu xue bao = Acta Microbiologica Sinica 50(9):1232–8

    PubMed  CAS  Google Scholar 

  • Zhu J, Paul WE (2010) Peripheral CD4+ T-cell differentiation regulated by networks of cytokines and transcription factors. Immunol Rev 238(1):247–62

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (31272594) and the Science and Technology Innovation Team of Heilongjiang Province. The authors wish to thank NIZO Food Research for providing the pPG612 plasmids and Food Science College of Northeast Agricultural University (NEAU) for providing the L. casei bacterial strain.

Conflict of interest

The authors declare no financial or commercial conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yijing Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, X., Yu, M., Qiao, X. et al. Up-regulation of MDP and tuftsin gene expression in Th1 and Th17 cells as an adjuvant for an oral Lactobacillus casei vaccine against anti-transmissible gastroenteritis virus. Appl Microbiol Biotechnol 98, 8301–8312 (2014). https://doi.org/10.1007/s00253-014-5893-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5893-2

Keywords

Navigation